Tìm số nguyên x, y biết: 6x^2+5y^2 = 74
Tìm các số nguyên x,y thỏa mãn: \(6x^2-5y^2=74\)
6x^2 - 5y^2 = 74
<=> 6(x^2 - 4) = 5(10 - y^2)
--> 6(x^2 - 4) chia hết cho 5. Mà ƯCLN(6; 5) = 1
--> x^2 - 4 chia hết cho 5
Đặt x^2 = 5k + 4 (k tự nhiên)
--> y^2 = 10 - 6k
Do x^2, y^2 > 0 nên 5k + 4, 10 - 6k > 0 --> -4/5 < k < 5/3
--> k = 0 hoặc k = 1
TH1: k = 0 --> y = sqrt(10) (loại)
TH2: k = 1
--> (x; y) = (-3; -2); (3; 2) (thỏa)
6x^2 +5y^2 =74
(1) 6x2≥0 ⇒ 5y2≤74 ⇔
y2≤745<15 ⇔ y2≤14
⇒y ={±3;±2;±1;0} 6x2≥0 ⇒5y2 ≤74⇔ y2≤745<15⇔ y2≤14 ⇒y={±3;±2;±1;0}
(2)x;y thuộc Z => 6x^2 luôn là số chẵn => y phải chẵn
(3) 6x^2 luôn chia hết cho 3 (74=7+4=11) không chia hết cho 3
=> y không chia hết cho 3
từ (1) (2) và (3) => y=±2y=±2
⇔6x2=74−5.4=54⇔x2=9;x=±3⇔6x2=74−5.4=54⇔x2=9;x=±3
(x;y)=(±3;±2)
6x^2 - 5y^2 = 74
<=> 6(x^2 - 4) = 5(10 - y^2)
--> 6(x^2 - 4) chia hết cho 5. Mà ƯCLN(6; 5) = 1
--> x^2 - 4 chia hết cho 5
Đặt x^2 = 5k + 4 (k tự nhiên)
--> y^2 = 10 - 6k
Do x^2, y^2 > 0 nên 5k + 4, 10 - 6k > 0 --> -4/5 < k < 5/3
--> k = 0 hoặc k = 1
TH1: k = 0 --> y = sqrt(10) (loại)
TH2: k = 1
--> (x; y) = (-3; -2); (3; 2) (thỏa)
Tìm các số nguyên x, y biet: 6x^2+5y^2=74
Tìm các số nguyên x, y biết :\(6x^2+5y^2\)=74
tìm các cặp số nguyên dương (x,y) thoả mãn : \(6x^2+5y^2=74\)
Cuu Cần gấp !!!!
Tìm các số nguyên x,y thỏa mãn:6x2+5y2=74
vì 6x2 và 74 \(⋮2\)
=> 5y2 \(⋮2\)
=> y2 \(⋮2\)( vì (5,2) = 1 )
=> y = 2 ( vì 2 là số nguyên tố chẵn duy nhất )
thay y = 2 vào bài ta được:
6x2 + 5.4 = 74
6x2 = 54
x2 = 9
=> x = 3
vậy x = 3 và y = 2
6x2 + 5y2 = 74 (1)
Ta có : 5x2 + 5y2 =< 6x2 + 5y2 =< 6x2 + 6y2
<=> 5(x2 + y2) =< 74 =< 6(x2 + y2)
<=> 12,3 =< x2 + y2 =< 14,8
<=> 13 =< x2 + y2 =< 14 (vì x, y tự nhiên => x2 + y2 tự nhiên)
Trường hợp 1 : x2 + y2 = 13 (2)
Ta có hệ :
6x2 + 5y2 = 74 (1)
x2 + y2 = 13 (2)
<=> 6x2 + 5y2 = 74
5x2 + 5y2 = 65
Trừ 2 phương trình : x2 = 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2 = 13 - x2 = 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2 + y2 = 14 (4)
Ta có hệ :
6x2 + 5y2 = 74 (1)
x2 + y2 = 14 (3)
<=> 6x2 + 5y2 = 74
5x2 + 5y2 = 70
Trừ 2 phương trình : x2 = 4 <=> x = 2
Thay vào (3) : y2 = 14 - 4 = 10 <=> y = \(\sqrt{10}\) (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3) .
6x^2 +5y^2 =74
(1) 6x2≥0 ⇒ 5y2≤74 ⇔
y2≤745<15 ⇔ y2≤14
⇒y ={±3;±2;±1;0} 6x2≥0 ⇒5y2 ≤74⇔ y2≤745<15⇔ y2≤14 ⇒y={±3;±2;±1;0}
(2)x;y thuộc Z => 6x^2 luôn là số chẵn => y phải chẵn
(3) 6x^2 luôn chia hết cho 3 (74=7+4=11) không chia hết cho 3
=> y không chia hết cho 3
từ (1) (2) và (3) => y=±2y=±2
⇔6x2=74−5.4=54⇔x2=9;x=±3⇔6x2=74−5.4=54⇔x2=9;x=±3
(x;y)=(±3;±2)
Tìm các số nguyên x,y thỏa mãn : 6x2+5y2=74
Ta có:
\(6x^2+5y^2=74\left(1\right)\)
Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}x^2+1⋮5\\0< x^2\le12\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}}}\)
Với \(x^2=4\Rightarrow y^2=10\) (loại)
Với \(x^2=9\Rightarrow y^2=4\) (thỏa mãn)
\(\Rightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{9}\\y=\sqrt{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-3;3\right)\\y=\left(-2;2\right)\end{cases}}}\)
Vậy...
Sai bét nha bạn của tui
Tìm các số nguyên x,y thỏa mãn: \(6x^2+5y^2=74\)
Tìm các số nguyên x,y sao cho :
\(6x^2+5y^2=74\)
y2 lớn hơn hoặc bằng 0
=> 5y2 lớn hơn hoặc bằng 0
=> 6y2 bé hơn hoặc bằng 74
=>x2<74/6<13
vì x nguyên => x2 nhận các giá trị : 0;1;4;9
Rồi ghi ra từng th là xong
Trà Chanh gkm bây
Ta có : \(6x^2+5y^2=74\)
\(\Leftrightarrow\left(x^2+1\right)+5\left(x^2+y^2\right)=75\)
Ta thấy : \(\hept{\begin{cases}5\left(x^2+y^2\right)⋮5\\75⋮5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2+1⋮5\\0\le x^2\le12\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}}\)
* Nếu : \(x^2=4\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
....
Bạn làm tiếp, thay các biến x vào biểu thức bản đầu để tìm ra y.
Tìm các số nguyên x,y thỏa mãn:
\(6x^2+5y^2=74\)
6x2
+ 5y2
= 74 (1)
Ta có : 5x2
+ 5y2
=< 6x2
+ 5y2
=< 6x2
+ 6y2
<=> 5(x2
+ y2
) =< 74 =< 6(x2
+ y2
)
<=> 12,3 =< x2
+ y2
=< 14,8
<=> 13 =< x2
+ y2
=< 14 (vì x, y tự nhiên => x2
+ y2
tự nhiên)
Trường hợp 1 : x2
+ y2
= 13 (2)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 13 (2)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 65
Trừ 2 phương trình : x2
= 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2
= 13 - x2
= 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2
+ y2
= 14 (4)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 14 (3)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 70
Trừ 2 phương trình : x2
= 4 <=> x = 2
Thay vào (3) : y2
= 14 - 4 = 10 <=> y = 10 (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)
6x2
+ 5y2
= 74 (1)
Ta có : 5x2
+ 5y2
=< 6x2
+ 5y2
=< 6x2
+ 6y2
<=> 5(x2
+ y2
) =< 74 =< 6(x2
+ y2
)
<=> 12,3 =< x2
+ y2
=< 14,8
<=> 13 =< x2
+ y2
=< 14 (vì x, y tự nhiên => x2
+ y2
tự nhiên)
Trường hợp 1 : x2
+ y2
= 13 (2)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 13 (2)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 65
Trừ 2 phương trình : x2
= 9 <=> x = 3 (vì x >= 0)
Thay vào (2) y2
= 13 - x2
= 13 - 9 = 4 <=> x = 2
Nghiệm : (x ; y) = (2 ; 3)
Trường hợp 2 : x2
+ y2
= 14 (4)
Ta có hệ :
6x2
+ 5y2
= 74 (1)
x
2
+ y2
= 14 (3)
<=> 6x2
+ 5y2
= 74
5x2
+ 5y2
= 70
Trừ 2 phương trình : x2
= 4 <=> x = 2
Thay vào (3) : y2
= 14 - 4 = 10 <=> y = 10 (loại)
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3)
Tham khảo nha !!!
6x^2 +5y^2 =74
(1) 6x2≥0 ⇒ 5y2≤74 ⇔
y2≤745<15 ⇔ y2≤14
⇒y ={±3;±2;±1;0} 6x2≥0 ⇒5y2 ≤74⇔ y2≤745<15⇔ y2≤14 ⇒y={±3;±2;±1;0}
(2)x;y thuộc Z => 6x^2 luôn là số chẵn => y phải chẵn
(3) 6x^2 luôn chia hết cho 3 (74=7+4=11) không chia hết cho 3
=> y không chia hết cho 3
từ (1) (2) và (3) => y=±2y=±2
⇔6x2=74−5.4=54⇔x2=9;x=±3⇔6x2=74−5.4=54⇔x2=9;x=±3
(x;y)=(±3;±2)