So sánh
A=\(\frac{2009^{2008}+1}{2009^{2009}+1}\) và B= \(\frac{2009^{2009}+1}{2009^{2010}+1}\)
thực hiện tính và so sánh A=\(\frac{2008^{2009}+1}{2009^{2009}+1}\)và B=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
So sánh:A=\(\frac{2009^{2008}+1}{2009^{2009}+1}\)với B=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vì B là phân số bé hơn 1 nên cộng cùng một số vào tử và mẫu của phân số đó thì giá trị của B sẽ tăng thêm, ta có:
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
Vậy B < A
so sánh A= \(\frac{2009^{2008}+1}{2009^{2009}+1}\)và B= \(\frac{2009^{2009}+1}{2009^{2010}+1}\)
B = 20092009 + 1 / 20092010+1 < 20092009+1+2008 / 20092010+1+2008
= 20092009+2009 / 20092010+2009
= 2009(20092008+1) / 2009(20092009+1)
= 20092008+1 / 20092009+1 = A
=> A > B nhé!
Ai k mk mk k lại !!
Vậy bạn phả xét bổ đề \(\frac{a}{b}<\frac{a+n}{b+n}\)
So sánh : A = \(\frac{2009^{2008}+1}{2009^{2009}+1}\)với B = \(\frac{2009^{2009}+1}{2009^{2010}+1}\)
có ở trong đội tuyển toán không ? Câu này dễ lắm
2. So sánhA=\(\frac{2009^{2009}+1}{2009^{2010}+1}\) VÀ B=\(\frac{2009^{2010}-2}{2009^{2011}-2}\)
\(B=\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}}\)
So sánh \(\frac{2008}{2009}+\frac{2009}{2010}và\frac{2008+2009}{2009+2010}\)
1. \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
2. So sánh: \(\dfrac{2008}{2009}+\dfrac{2009}{2010}\) và \(\dfrac{2008+2009}{2009+2010}\)
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
So sánh :\(A=\frac{2009^{2008}+1}{2009^{2009+1}}\)
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}\)
umk khong sao bài dk hok thêm ý mà ^-^
Ta có :
\(2009A=\frac{2009\left(2009^{2008}+1\right)}{2009^{2009}+1}=\frac{2009^{2009}+2009}{2009^{2009}+1}=1+\frac{2008}{2009^{2009}+1}\)
\(2009B=\frac{2009\left(2009^{2009}+1\right)}{2009^{2010}+1}=\frac{2009^{2010}+2009}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}\)
Vì \(1+\frac{2008}{2009^{2009}+1}>1+\frac{2008}{2009^{2010}+1}\Rightarrow2009A>2009B\)
=> A > B
\(\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}\)
\(=\frac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}\)
\(A< 1\)
\(\Rightarrow A< B\)
k minh nha minh dang can