so sanh a va b
a = 2014 x 2012
b = 2013 x 2013
A=2012/2013+2013/2014, B=2012+2013/2013+2014. So sanh A va B
Ta có: 1- 2012/2013=1/2013
1- 2013/2014=1/2014
Mà 1/2013>1/2014
vậy 2012/2013<2013/2014
so sanh :A=2013^2012+1/2013^2013+1 va 2013^2013+1/2013^2014+1
Đặt B = 2013^2013+1/2013^2014+1
Ta có: \(B=\frac{2013^{2013}+1}{2013^{2014}+1}< \frac{2013^{2013}+1+2012}{2013^{2014}+1+2012}=\frac{2013^{2013}+2013}{2013^{2014}+2013}=\frac{2013\left(2013^{2012}+1\right)}{2013\left(2013^{2013}+1\right)}=\frac{2013^{2012}+1}{2013^{2013}+1}=A\)
Vậy A > B
so sanh a va b : a= 2013^2012+1/2013^2013+1
b=2013^2013+1/2013^2014+1
so sanh 20132014 va 20142013
so sanh \(a=\frac{2013}{2014}+\frac{2014}{2015}\) va \(b=\frac{2013+2014}{2014+2015}\)
\(\frac{3}{x+1}
a = \(\frac{2013}{2014}+\frac{2014}{2015}=\frac{2014-1}{2014}+\frac{2015-1}{2015}\)
\(=1-\frac{1}{2014}+1-\frac{1}{2015}\)
\(=2-\left(\frac{1}{2014}+\frac{1}{2015}\right)>1\) (1)
b = \(\frac{2013+2014}{2014+2015}
havsvsuvsvsjzbsvshshsvshjsvdhsjvdhsjdvdhdjdhdhsjdhdhsudghsushdhshshgdgshshdgshdhshdhdghshdgdvshhshdvdgdhshgdgd
h
So sanh 2 phan so sau:
2012 va 2013
2013 2014
\(\frac{2012}{2013}\)và \(\frac{2013}{2014}\)
=>\(\frac{2012}{2013}\) >\(\frac{2013}{2014}\) vì rút gọn\(\frac{2012}{2013}\frac{2013}{2014}=\frac{2012}{1}\frac{1}{2014}\)
=>\(\frac{4052168}{2014}>\frac{2014}{2014}\)
ĐÓ MÌNH LÀM XONG RỒI
Khải ơi bạn làm bài này theo phương pháp phần bù dc mà
cho 2 p/s a = 2013/2014 , b = 2003 / 2004 . so sanh a va b
\(\frac{2013}{2014}\)=\(\frac{2014-1}{2014}\)=\(1-\frac{1}{2014}\)
\(\frac{2003}{2004}=\frac{2004-1}{2004}=1-\frac{1}{2004}\)
\(\frac{1}{2014}< \frac{1}{2004}\)suy ra\(1-\frac{1}{2014}>1-\frac{1}{2004}\)
Nên \(\frac{2013}{2014}>\frac{2003}{2004}\)
\(\frac{2011\text{X}2013+2014}{2012\text{X}2012+2013}\)voi 1
hay so sanh
\(\frac{2011.2013+2014}{2012.2012+2013}=\frac{2011.2013+2013+1}{2012.2012+2012+1}=\frac{2013.\left(2011+1\right)+1}{2012.\left(2012+1\right)+1}=\frac{2013.2012+1}{2012.2013+1}=1\)
Vậy \(\frac{2011.2013+2014}{2012.2012+2013}=1\)
(Dấu . là nhân nha bạn)
\(\frac{2011.2013+2014}{2012.2012+2013}=\frac{2011.2013+2014}{\left(2011+1\right).\left(2013-1\right)+2013}\)
\(=\frac{2011.2013+2014}{2011.\left(2013-1\right)+2013-1+2014}\)
\(=\frac{2011.2013+2014}{2011.2013-2011+2013-1+2014}\)
\(=\frac{2011.2013+2014}{2011.2013+2015}\)
Vì 2011.2013 + 2014 < 2011.2013 + 2015
=> \(\frac{2011.2013+2014}{2011.2013+2015}< 1\)
So sanh: \(A=\frac{2014^{2013}+1}{2014^{2014}+1}\) va \(B+\frac{2014^{2012}+1}{2014^{2013}+1}\)
Giup minh nha, thanks cac ban
\(A=\frac{2014^{2013}+1}{2014^{2014}+1}<\frac{2014^{2013}+1+2013}{2014^{2014}+1+2013}\)
\(=\frac{2014\left(2014^{2012}+1\right)}{2014\left(2014^{2013}+1\right)}\)
\(=\frac{2014^{2012}+1}{2014^{2013}+1}\)\(=B\)
=> A < B