1/1.2+1/2.3+1/3.4+...+1/2009.2010
Tính 1/1.2+1/2.3+1/3.4+1/4.5+...+1/2009.2010
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{1}-\frac{1}{2010}\)
\(=\frac{2010}{2010}-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
tính
I = 1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2009.2010
\(I=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2009.2010}\)
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+.....+\left(\frac{1}{2009}-\frac{1}{2009}\right)-\frac{1}{2010}\)
\(I=1-0-0-...-0-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}=\frac{2009}{2010}\)
I = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
I = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2009 - 1/2010
I = 1 - 1/2010
I = 2009/2010
Vậy I = 2009/2010
Thực hiện dãy tính ( tính nhanh neus có thể)
I=1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
I=1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
I=1-1/2010
I=2009/2010
Vậy I=2009/2010
I = 1/1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010
I = 1-1/2010
I = 2009/2010
Chúc bạn học tốt nha
ta thấy: 1/1 - 1/2 = 1/2 = 1/1.2
1/2 - 1/3 = 1/6 = 1/2.3
1/3 - 1/4 = 1/12 = 1/3.4
tớ nêu cách làm rùi đó
Thực hiện dãy tính ( tính nhanh neus có thể)
I=1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010
\(I=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(I=1-\frac{1}{2010}\)
\(I=\frac{2009}{2010}\)
a/\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
1/1.2+1/2.3+...+1/2009.2010
=1-1/2+1/2-1/3+...+1/2009-1/2010
=1-1/2010
=2009/2010
Tính tổng sau : 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2009.2010.
Ai làm đúng mk like cho nha ^_^
=1 - 1/2 + 1/2 - 1/3 + ..... + 1/2009 - 1/2010
=1 - 1/2010
=2009/2010
1-1/2+1/2-1/3+1/3-1/4+... +1/2009-1/2010
1-1/2010=2009/2010
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{1}-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
M=1.2+2.3+3.4+...+2009.2010
M=1.2+2.3+3.4+...+2009.2010
3M = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2009.2010.3
3M = 1.2.3 + 2.3.(4-1 ) + 3.4.(5-2) + ... + 2009.2010.(2011-2008)
3M = 1.2.3 + 2.3.4 - 1.2.3 +3.4.5 - 2.3.4 + ... + 2009.2010.2011 - 2008.2009.2010
3M = 2009.2010.2011
=> M = 2009.2010.2011 : 3
=> M = 2706866330
Chứng minh A= ( 1/1.2 + 1/3.4 + ... + 1/2007.2008 + 1/2009.2010 ) / ( 1/1006.2010 + 1/1007.2009 + ... + 1/2009.1007 + 1/2010.1006 ) thuộc Z
hí ae toi ms ngủ day
Tính tổng các phân số sau:
\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... +\(\frac{1}{2009.2010}\)
=1-1/2+1/2-1/3+1/3+1/4+.....+1/2009-1/2010
=1-1/2010
=-1/2009
lâu lằm k làm mấy bài kiểu nay... đúng k bạn ơi?????^-^
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}=\frac{2009}{2010}\)