Cho x là số nguyên. Biểu thức sau có giá trị là dố chẵn hay số lẻ: \(^{x^2}-x+2010\)
Program HOC24;
var x,a,b: integer;
y: longint;
begiin
write('Nhap a;x;b : '); readln(a,x,b);
y:=a*x+b;
if y mod 2=0 then write('y la so le ') else write('y la so chan');
readln
end.
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
cho 2 đa thức P(x)=1+x+x^x+x^3+....+x^2009+x^2010 và Q(x)=1-x+x^2-x^3+x^4+....-x^2009+x^2010 giá trị của biểu thức P(1/2)+Q(1/2) có dạng biểu diễn hữu tỉ là a/b a,b thuộc N a,b là 2 số nguyên tố cùng nhau chứng minh a chia hết cho 5
Cho biểu thức A= (x – 2)(x+4)
Tìm số tự nhiên x để A có giá trị là số nguyên tố
Tìm số nguyên x để biểu thức A có giá trị là số âm
Mình cần gấp lắm. Giúp mình với.
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
P(x)=1+x+x^2+x^3+...+x^2010 và Q(x)=1-x+x^2-x^3+...+x^2010. Giá trị của biểu thức P(1/2)+Q(1/2) có dạng biểu diễn hữu tỉ là a/b, a/b thuộc N. a,b là 2 số nguyên tố cùng nhau. chứng minh a chia hết cho 5
P(x)=1+x+x^2+x^3+...+x^2010 và Q(x)=1-x+x^2-x^3+...+x^2010. Giá trị của biểu thức P(1/2)+Q(1/2) có dạng biểu diễn hữu tỉ là a/b, a/b thuộc N. a,b là 2 số nguyên tố cùng nhau. chứng minh a chia hết cho 5
Cho 2 đa thức :
P(x)=x+1+x^2+x^3+...+x^2009+x^2010 và Q(x)=1-x+x^2-x^3+x^4-...-x^2009+x^2010
Giá trị của biểu thức P(1/2)+Q(1/2) có dạng biểu diễn hữu tỉ là a/b ; a,b là 2 số nguyên tố cùng nhau .
Chứng minh a chia hết cho 5
A(2010)=x^2010 - 2009x^2009 - 2009x^2008 - 2009x^2007 -...- 2009x + 1
ta có: 2010-1=2009 --> x-1=2009
thay x-1=2009 vào đa thức A(2010) ta được:
A(2010)=x^2010 - x^2009(x-1) - x^2008(x-1) - x^2007(x-1) -...- x(x-1) + 1
=x^2010 - x^2010 + x^2009 - x^2009 + x^2008 - x^2008 + x^2007 -...- x^2 + x + 1
= x + 1
thay x=2010 vao x+1 ta được:
2010+1=2011
vậy A(2010)=2011
P(x)=1+x+x^2+x^3+...+x^2010 và Q(x)=1-x+x^2-x^3+...+x^2010. Giá trị của biểu thức P(1/2)+Q(1/2) có dạng biểu diễn hữu tỉ là a/b, a/b thuộc N. a,b là 2 số nguyên tố cùng nhau. chứng minh a chia hết cho 5
giải giúp mình
Bài 1: Chứng minh các PS sau
là PS tối giản :
A=12n+1/30n+2 ; B=14n+17/21n+25
Bài 2:Cũng đề bài trên phần a và b tìm các số nguyên n để các biểu thức sau có giá trị là số nguyên
Bài 3:Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất
a,A= (x-1)2 +2008 ; b, B=|x+4| + 1996;c,C=5/x-2;
Bài 4: Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất
a,P=2010 -(x+1)2008 b,Q=1010 -|3-x| c,C=5/(x-3)2 +1