cho x, y >0 và \(x^2+y^2=1\)
Tính GTNN, GTLN của \(\sqrt{1+2x}+\sqrt{1+2y}\)
cho x,y \(\ge\)0 và \(x^2+y^2=1.T\text{ín}h\) GTNN của P = \(\sqrt{1+2x}+\sqrt{1+2y}\)
Ta có \(x,y\le1\) nên \(1\le\sqrt{1+2x}\le\sqrt{3}\).
Suy ra \(\left(\sqrt{1+2x}-1\right)\left(\sqrt{1+2x}-\sqrt{3}\right)\le0\Rightarrow\left(\sqrt{3}+1\right)\sqrt{1+2x}\ge1+2x+\sqrt{3}\).
Tương tự \(\left(\sqrt{3}+1\right)\sqrt{1+2y}\ge1+2y+\sqrt{3}\).
Suy ra \(\left(\sqrt{3}+1\right)P\ge2+2\sqrt{3}+2\left(x+y\right)\).
Mà \(\left(x+y\right)^2\ge x^2+y^2=1\Rightarrow x+y\le1\Rightarrow\left(\sqrt{3}+1\right)P\ge2+2\sqrt{3}+2=4+2\sqrt{3}\Rightarrow P\ge\sqrt{3}+1\).
Dấu "=" xảy ra khi x = 0; y = 1 hoặc x = 1; y = 0.
1. Cho x,y,z ko âm và x+y+z=1
Tìm GTLN của
P=\(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
tìm GTLN bvaf GTNN của \(P=\sqrt{1+2x}+\sqrt{1+2y}\)
biết rằng x2+y2 =1 và \(1\le x+y\le\sqrt{2}\)
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
Cho x,y không âm thỏa mãn: \(x^2+y^2=1\)
a, CMR: \(1\le x+y\le\sqrt{2}\)
b, Tìm GTLN và GTNN của \(P=\sqrt{1+2x}+\sqrt{1+2y}\)
a.
\(x^2+y^2=1\Rightarrow0\le x;y\le1\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\end{matrix}\right.\) \(\Rightarrow x+y\ge x^2+y^2=1\)
\(x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\)
b.
\(P\le\sqrt{2\left(1+2x+1+2y\right)}\le\sqrt{2\left(2+2\sqrt{2}\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{1+2x}=a\\\sqrt{1+2y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le a;b\le\sqrt{3}\\a^2+b^2=2+2\left(x+y\right)\ge4\end{matrix}\right.\)
\(\left(a-1\right)\left(a-\sqrt{3}\right)\le0\Rightarrow a^2+\sqrt{3}\le a\left(1+\sqrt{3}\right)\Rightarrow a\ge\frac{a^2+\sqrt{3}}{1+\sqrt{3}}\)
Tương tự: \(b\ge\frac{b^2+\sqrt{3}}{1+\sqrt{3}}\)
\(\Rightarrow P=a+b\ge\frac{a^2+b^2+2\sqrt{3}}{1+\sqrt{3}}\ge\frac{4+2\sqrt{3}}{1+\sqrt{3}}=1+\sqrt{3}\)
tìm GTNN và GTLN của hs y=\(\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)
\(y=\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)
\(=\sqrt{\left(x-1\right)^2}-\sqrt{\left(x+1\right)^2}\)
\(=\left|x-1\right|-\left|x+1\right|\)
+)Xét \(x< -1\)\(\Rightarrow\begin{cases}x+1< 0\Rightarrow\left|x+1\right|=-\left(x+1\right)=-x-1\\x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)
\(\Rightarrow y=\left(-x-1\right)-\left(-x+1\right)=2\)
+)Xét \(-1\le x< 1\)\(\Rightarrow\begin{cases}x\ge-1\Rightarrow x+1\ge0\Rightarrow\left|x+1\right|=x+1\\x< 1\Rightarrow x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)
\(\Rightarrow y=\left(-x+1\right)-\left(x+1\right)=-2x\)
+)Xét \(x\ge1\)\(\Rightarrow\begin{cases}x-1\ge0\Rightarrow\left|x-1\right|=x-1\\x+1\ge0\Rightarrow\left|x+1\right|=x+1\end{cases}\)
\(\Rightarrow y=\left(x-1\right)-\left(x+1\right)=-2\)
Ta thấy:
Với \(x\ge1\) ta tìm được \(Min_y=-2\)Với \(x< -1\) ta tìm được \(Max_y=2\)
Tìm : a) GTNN của A = x2 + y2 với x + y = 4
b) GTLN của B = x2y với x > 0, y > 0 và 2x + xy = 4
c) GTNN của \(C=\sqrt{x^2+4x+13}\)
d) GTLN của \(D=\sqrt{x-1}+\sqrt{y-2}\) với x + y = 4
e) GTNN của \(E=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
f) GTNN của \(F=\left|x+1\right|+\sqrt{x^2+2x+5}\)
câu a) rút x theo y thế vào A rồi áp dụng HĐT
b)rút xy thế vào B
c)HĐT
d)rút x theo y thé vào C
rồi dùng BĐT cô-si
e)BĐT chưa dấu giá trị tuyệt đối
cho x, y là các số không âm và x2 +y2 =1
tìm GTLN, GTNN của A= \(\sqrt{1+2x}\) +\(\sqrt{1+2y}\)
Cho x,y,z >0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}+\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}+\dfrac{1}{\sqrt{5z^2+2xz+2x^2}}\)
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)
\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)
\(P_{max}=1\) khi \(x=y=z=1\)