giá trị nhỏ nhất của 4x^2-12x+10
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
tìm giá trị nhỏ nhất của biểu thức sau : A=\(4x^2-12x+10\)
ta có 4X2-12X+10= 4X2-2*2*3X+32+1=(2X-3)2+1
(2x-3)2>=0 => ( 2X-3)2+1>=1
Biểu thức đạt giá trị nhỏ nhất là 1
khi đó 2X-3=0 => X=3/2
Ta có: 4x^2 - 12x + 10 = 4x^2 - 6x - 6x +9 + 1= [2x(2x-3) - 3(2x-3)] + 1 = (2x-3)^2 + 1
để (2x-3)^2 + 1 bé nhất thì (2x-3)^2 bé nhất => (2x-3)^2= 0 => (2x-3)^2 + 1 = 1
Vậy giá trị bé nhất của A=.. là 1
4x^2-12x+10
=4x^2-12x+9+1
=(2x-3)^2+1
Ma: (2x-3)^2 >=1
=> (2x-3)^2+1>=1
Vay GTNN la 1
Tìm giá trị nhỏ nhất của l7y-8l+12x+4+4x+4x2
Tính giá trị của x để các biểu thức sau có giá trị nhỏ nhất. Tìm giá trị đó:
a) A= x2+6x+10 ; b) B= 4x2 -12x+13
Ta có:
a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)1 \(\forall\)x
Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3
Vậy MinA = 1 <=> x = -3
b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy MinB = 4 <=> x = 3/2
cho f(x)=4x^2-12x+10
tìm x để f(x) thuộc giá trị nhỏ nhất
\(f\left(x\right)=4x^2-12x+10\)
=> \(f\left(x\right)=4\left(x^2-3x\right)+10\)
=> \(f\left(x\right)=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)-9+10\)
=> \(f\left(x\right)=4.\left(x-\frac{3}{2}\right)^2+1\)
Có: \(\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x
=> \(4.\left(x-\frac{3}{2}\right)^2\ge0\)với mọi x
=> \(4.\left(x-\frac{3}{2}\right)^2+1\ge1\)với mọi x
=> \(f\left(x\right)\ge1\)với mọi x
Dấu "-" xảy ra <=> \(\left(x-\frac{3}{2}\right)^2=0\)
<=> \(x-\frac{3}{2}=0\)
<=> \(x=\frac{3}{2}\)
KL: GTNN của f(x) = 1 <=> \(x=\frac{3}{2}\)
4x2-12x+Vậy = [(2x)2-2.2x.3+32]+1
= (2x+3)2+1 >= 1
Vậy GTNN của f(x) bằng 1 khi và chỉ kho 2x+3=0 => x=-3/2
k đúng hộ mình ^^
Bài 3.
a) Tìm giá trị nhỏ nhất của biểu thức: A=x2+12x+39; B=9x2-12x
b) Tìm giá trị lớn nhất của biểu thức sau: C=4x-x2+1; D=-4x2+4x-3
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
1,TBC các giá trị x thoả mãn 4(x-1)^2=x^2
2,Giá trị nhỏ nhất x^2-2x-3
3,Giá trị nhỏ nhất của 3x^2-12x+1
4,Giá trị lớn nhất của 4x-x^2-12
4x2-12x+12
tìm giá trị nhỏ nhất của bt
\(4x^2-12x+12\)
\(=\left[\left(2x\right)^2-2\cdot6x+6^2\right]-24\)
\(=\left(2x+6\right)^2-24\ge-24\)
vậy min = -24 khi và chỉ khi x=-3
\(=4\left(x^2-3x+3\right)\)
\(=4\left(\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right)+\frac{3}{4}\right)\)
\(=4.\left(x-\frac{3}{2}\right)^2+3\)
vậy minA=3 khi x=3/2
tìm giá trị nhỏ nhất của A=x^4-4x^3+7x^2-12x+75