3/1.2.3 + 3/2.3.4 + 3/4.5.6 + .... + 3/23.24.25
1. Chứng tỏ 2017^100-1 chia hết cho 3.
2.Tính tổng: A= 1.2.3+2.3.4+4.5.6+...+98.99.100
Ta có : A = 1.2.3 + 2.3.4 + 4.5.6 + ..... + 98.99.100
=> 6A = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + ...... + 98.99.100.101
=> 6A = 98.99.100.101
=> A = \(\frac{98.99.100.101}{6}=16331700\)
có 20172 đồng dư 1 mod (3)
=> (20172)50 đồng dư 1 mod (3)
=> (20172)50-1 đồng dư 1-1 = 0 mod (3)
=> dpcm
D=1/1.2.3+1/2.3.4+................+1/23.24.25 = ?
\(2D=\frac{2}{1.2.3}+\frac{2}{2.3.4}+..+\frac{2}{23.24.25}\)
\(2D=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-.....-\frac{1}{24.25}=\frac{1}{2}-\frac{1}{600}=\frac{299}{600}\Rightarrow D=\frac{299}{1200}\)
B=1.3+3.5+5.7+...+97.98
C=1.2.3+2.3.4+3.4.5+4.5.6+5.6.7+7.8.9+8.9.10
D=1.2.3+2.3.4+...+99.100.101
1.2.3 - 2.3.4 + 3.4.5 - 4.5.6 + … - 2126.2127.2128
Tìm N = 1.2.3+2.3.4+3.4.5+4.5.6+..........+19.20.21
4N = 1.2.3.4+ 2.3.4.4 + .... + 19.20.21.4
4N = 1.2.3.(4-0) + ...+ 19.20.21.(22-18)
4N = 1.2.3.4 - 0.1.2.3 + .... + 19.20.21.22-18.19.20.21
4N = 19.20.21.22
N = 19.5.21.22
1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9
Cho S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/23.24.25
Hãy so sánh S với 0,25
S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/23.24.25
2.S = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/23.24.25
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ...+ 1/23.24 - 1/24.25
= 1/1.2 - 1/24.25 = 1/2 - 1/600
=> S = (1/2 - 1/600) : 2 = 1/4 - 1/1200
Dễ thấy S < 1/4 Hay S < 0,25
1/2.(2/1.2.3+2/2.3.4+......2/23.24.25)
1/2.(1/1.2-1/2.3+1/2.3-1/3.4+……+1/23.24-1/24.25)
1/2.(1/1.2-1/24.25)
1/2.(1/2-1/600)
1/2.(300/600-1/600)
1/2.299/600
299/1200
Ta co 0.25=1/4
Nen ta so sanh 1/4 va 299/1200
Vi 300/1200>299/1200
Nen 1/4>299/1200
Ket luan 0,25>S
S=
1.2.3
1
+
2.3.4
1
+...+
(n−1).n.(n+1)
1
+...+
23.24.25
1
=
1
2
.
(
1
1.2
−
1
2.3
+
1
2.3
−
1
3.4
+
.
.
.
+
1
(
�
−
1
)
.
�
−
1
�
.
(
�
+
1
)
+
.
.
.
+
1
23.24
−
1
24.25
)
=
2
1
.(
1.2
1
−
2.3
1
+
2.3
1
−
3.4
1
+...+
(n−1).n
1
−
n.(n+1)
1
+...+
23.24
1
−
2-gameguardian .25
1
)
=
1
2
.
(
1
1.2
−
1
24.25
)
=
299
1200
=
2
1
.(
1.2
1
−
24.25
1
)=
1200
299
1.2.3+2.3.4+3.4.5+4.5.6+5.6.7+6.7.8+7.8.9+8.9.10
Trở lại bài toỏn 2. mỗi hạng tử của tổng A cú hai thừa số thỡ ta nhõn A với 3 lần khoảng cỏch giữa hai thừa số đó. Học tập cách đó , trong bài này ta nhõn hai vế của A với 4 lần khoảng cách đó vỡ ở đây mỗi hạng tử cú 3 thừa số .Ta giải được bài toỏn như sau :
A = 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10
4A = (1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + 5.6.7 + 6.7.8 + 7.8.9 + 8.9.10).4
4A = [1.2.3.(4 – 0) + 2.3.4.(5 – 1) + + 8.9.10.(11 – 7)]
4A = (1.2.3.4 – 1.2.3.4 + 2.3.4.5 – 2.3.4.5 + + 7.8.9.10 – 7.8.9.10 + 8.9.10.11) 4A = 8.9.10.11 = 1980.
Từ đó ta cú kết quả tổng quỏt
1.2.3+2.3.4+3.4.5+4.5.6+5.6.7+6.7.8+7.8.9+8.9.10=\(\frac{8.9.10.11}{4}=1980\)
cái này sử dụng phương pháp quy nạp toán học
Tính:
1.2.3+2.3.4+3.4.5+4.5.6+...+97.98.99+98.99.100
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
TICK ĐÚNG GIÚP MÌNH Ặ