\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...\frac{2}{97.100}\)
nêu cách giải nha các bạn !!!
Tính tổng:
A=\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
Cảm ơn trước các bạn nè
\(A=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{33}{50}\)
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\frac{99}{100}\)
\(\Rightarrow A=\frac{33}{50}\)
\(\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)
\(\Rightarrow\frac{3}{2}A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow\frac{3}{2}A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{100}:\frac{3}{2}=\frac{33}{50}\)
tính các tổng sau một cách hợp lí:
\(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
B=2(1/1.4 +1/4.7+....+1/97.100)
3B= 2(3/1.4+3/4.7+...+3/97.100)
3B=2(1-1/4+1/4-1/7+...+1/97-1/100)
3B= 2(1-1/100)
3B= 2.99/100
3B= 99/50
B=33/50.
B=2/1.4+2/4.7+2/7.10+...+2/97.100
B=2/3.3/1.4+2/3.3/4.7+2/3.3/7.10+...+2/3.3/97.100
B=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100) (dùng phương pháp khử)
B=2/3(1-1/100)
B=2/3.99/100
B=33/50
B=\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)
B=\(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{100}\)
B=\(\frac{2}{1}-\frac{2}{100}=\frac{200}{100}-\frac{2}{100}\)
B=\(\frac{198}{100}=\frac{46}{25}\)
Tính
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)
anh ơi ,toán này hồi em học lớp 4 còn biết thế mà anh ko biết, gợi ý nha:toán này thuộc dạng sai phân
\(\frac{3}{2}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)
\(\frac{3}{2}A=1-\frac{1}{100}\)
\(\frac{3}{2}A=\frac{99}{100}\)
\(A=\frac{33}{50}\)
k minh nha
bài này dễ thế mà không giải được hả bạn
tính tổng
A=\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
A = \(\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
A = \(\frac{2}{3}.\left(1-\frac{1}{100}\right)\)= \(\frac{2}{3}.\frac{99}{100}\)= \(\frac{33}{50}\)
A = \(\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+....+\frac{2}{97\cdot100}\)
A = \(\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+....+\frac{3}{97\cdot100}\right)\)
A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....\frac{1}{97}-\frac{1}{100}\right)\)
A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)
A = \(\frac{2}{3}\cdot\frac{99}{100}\)
A = \(\frac{33}{50}\)
Tính:
A = \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=2.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(=2.\frac{99}{100}\)
\(=\frac{99}{50}\)
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
=> \(A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
=> \(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
=> \(A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)
=> \(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
Study well ! >_<
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\frac{99}{100}\)
\(A=\frac{33}{50}\)
B=\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+.......+\frac{2}{97.100}\)
B =\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...\frac{2}{97.100}\)
=2.(\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\))
3B=2.(\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\))
3B=2.(\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\))
3B=2.(1-\(\frac{1}{100}\))
3B=2.\(\frac{99}{100}\)=\(\frac{99}{50}\)
=>B=\(\frac{99}{50}:3\)=\(\frac{33}{50}\)
Tick mik nha
Tính \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
mình cần gấp lắm có ai giúp giupf mình với!
Mình ko chắc lắm, nếu sai thì xin lỗi nhiều
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=2.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)
\(A=2.\left(\frac{1.3}{1.4.3}+\frac{1.3}{4.7.3}+\frac{1.3}{7.10.3}+...+\frac{1.3}{97.100.3}\right)\)
\(A=2.\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(A=2.\frac{1}{3}.\left(\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}\right)\)
\(A=\frac{2}{3}.\left(\frac{4}{1.4}-\frac{1}{1.4}+\frac{7}{4.7}-\frac{4}{4.7}+\frac{10}{7.10}-...-\frac{97}{97.100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\frac{99}{100}\)
\(A=\frac{33}{50}\)
Tính tổng: A = \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
A=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
A=2/3(1-1/100)
A=2/3.99/100
A=33/50
mình k pit co dung k nua nghe
A=2/1.4+2/4.7+2/7.10+...+2/97.100
=2/3(3/1.4+3/4.7+3/7.10+...+3/97.100)
=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
=2/3(1-1/100)=33/50
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)