Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nguyễn Trang Linh
Xem chi tiết
Trần Việt Linh
11 tháng 9 2016 lúc 20:02

\(A=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{33}{50}\)

Nguyễn Huy Tú
11 tháng 9 2016 lúc 20:03

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(\Rightarrow A=\frac{33}{50}\)

Phạm Tú Uyên
11 tháng 9 2016 lúc 20:08

\(\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\)

\(\Rightarrow\frac{3}{2}A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow\frac{3}{2}A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{100}:\frac{3}{2}=\frac{33}{50}\)

Thảo LCOI
Xem chi tiết
Trần Hà Hương
6 tháng 4 2016 lúc 19:57

B=2(1/1.4 +1/4.7+....+1/97.100)

3B= 2(3/1.4+3/4.7+...+3/97.100)

3B=2(1-1/4+1/4-1/7+...+1/97-1/100)

3B= 2(1-1/100)

3B= 2.99/100

3B= 99/50

B=33/50.

Đặng Quỳnh Ngân
6 tháng 4 2016 lúc 19:57

B=2/1.4+2/4.7+2/7.10+...+2/97.100

B=2/3.3/1.4+2/3.3/4.7+2/3.3/7.10+...+2/3.3/97.100

B=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100) (dùng phương pháp khử)

B=2/3(1-1/100)

B=2/3.99/100

B=33/50

Quản gia Whisper
6 tháng 4 2016 lúc 19:58

B=\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)

B=\(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{100}\)

B=\(\frac{2}{1}-\frac{2}{100}=\frac{200}{100}-\frac{2}{100}\)

B=\(\frac{198}{100}=\frac{46}{25}\)

Xem chi tiết
Hasune Miku
8 tháng 3 2017 lúc 21:06

anh ơi ,toán này hồi em học lớp 4 còn biết thế mà anh ko biết, gợi ý nha:toán này thuộc dạng sai phân

Duong Minh Hieu
8 tháng 3 2017 lúc 21:08

\(\frac{3}{2}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\)

\(\frac{3}{2}A=1-\frac{1}{100}\)

\(\frac{3}{2}A=\frac{99}{100}\)

\(A=\frac{33}{50}\)

k minh nha

Nguyễn Thanh Tùng
8 tháng 3 2017 lúc 21:19

bài này dễ thế mà không giải được hả bạn

Nguyễn Xuân Dũng
Xem chi tiết
soyeon_Tiểu bàng giải
11 tháng 9 2016 lúc 11:09

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Nguyễn Phương Anh
11 tháng 9 2016 lúc 11:12

A = \(\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}.\left(1-\frac{1}{100}\right)\)= \(\frac{2}{3}.\frac{99}{100}\)= \(\frac{33}{50}\)
 

Trieu Minh Anh
11 tháng 9 2016 lúc 11:17

A = \(\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+....+\frac{2}{97\cdot100}\)

A = \(\frac{2}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+....+\frac{3}{97\cdot100}\right)\)

A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....\frac{1}{97}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)

A = \(\frac{2}{3}\cdot\frac{99}{100}\)

A = \(\frac{33}{50}\)

_Nhạt_
Xem chi tiết
Trường
10 tháng 4 2019 lúc 20:16

\(A=2.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)\) 

\(=2.\left(\frac{1}{1}-\frac{1}{100}\right)\) 

\(=2.\frac{99}{100}\) 

\(=\frac{99}{50}\)

Nguyễn Phạm Hồng Anh
10 tháng 4 2019 lúc 20:16

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

=>  \(A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

=>  \(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

=>  \(A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

=> \(A=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

Study well ! >_<

Vương Hải Nam
10 tháng 4 2019 lúc 20:17

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

Trần Đình Dủng
Xem chi tiết
Tào Tháo Đường
25 tháng 2 2020 lúc 20:23

B =\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...\frac{2}{97.100}\)

=2.(\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\))

3B=2.(\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\))

3B=2.(\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\))

3B=2.(1-\(\frac{1}{100}\))

3B=2.\(\frac{99}{100}\)=\(\frac{99}{50}\)

=>B=\(\frac{99}{50}:3\)=\(\frac{33}{50}\)

Tick mik nha

Khách vãng lai đã xóa
pham tu anh
Xem chi tiết
pham tu anh
6 tháng 2 2015 lúc 20:44

có phải là 99/100 đúng không

 

pham tu anh
6 tháng 2 2015 lúc 21:00

mình cần gấp lắm có ai giúp giupf mình với!

 

Nguyễn Lương Bảo Tiên
6 tháng 2 2015 lúc 21:39

Mình ko chắc lắm, nếu sai thì xin lỗi nhiều

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=2.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)

\(A=2.\left(\frac{1.3}{1.4.3}+\frac{1.3}{4.7.3}+\frac{1.3}{7.10.3}+...+\frac{1.3}{97.100.3}\right)\)

\(A=2.\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=2.\frac{1}{3}.\left(\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}\right)\)

\(A=\frac{2}{3}.\left(\frac{4}{1.4}-\frac{1}{1.4}+\frac{7}{4.7}-\frac{4}{4.7}+\frac{10}{7.10}-...-\frac{97}{97.100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

Phát Lê
Xem chi tiết
Hà Hoài Thư
9 tháng 4 2016 lúc 10:27

A=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)

A=2/3(1-1/100)

A=2/3.99/100

A=33/50

mình k pit co dung k nua nghe

kagamine rin len
9 tháng 4 2016 lúc 10:44

A=2/1.4+2/4.7+2/7.10+...+2/97.100

=2/3(3/1.4+3/4.7+3/7.10+...+3/97.100)

=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)

=2/3(1-1/100)=33/50

Mickey Vân
Xem chi tiết