tính giá trị của biểu thức:A=3/5.7+3/7.9+...+3/59.61
Tính giá trị các biểu thức:
\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{59.61}\)
Đặt A=\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{59.61}\)
A=2( \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{59.61}\))
A=2( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\)\(\frac{1}{59}-\frac{1}{61}\))
=2( \(\frac{1}{5}-\frac{1}{61}\))=2.\(\frac{56}{305}\)=\(\frac{112}{305}\)
Tính nhanh
3/5.7 + 3/7.9 + ...+ 3/59.61
gọi biểu thức trên là A. ta có:
3A = 1/5.7+1/7.9+......+ 1/59.61
3A = 1/5-1/7+1/7-1/9+....+1/59-1/61
3A = 1/5 - 1/61
3A = 56/305
A = 56/305 : 3 = 56/915
Tính tổng: S = 3/5.7+3/7.9+.........................+3/59.61
S= 3/5.7 + 3/7.9 +...........................+3/59.61
=3/2.(1/5 - 1/7 +1/7 -1/9 +....................+ 1/59-1/61)
=3/2.(1/5-1/61)
mình chỉ làm được tới đó
\(=\frac{1}{5}-\frac{1}{61}\)
\(=\frac{56}{305}\)
S=3/5.7+3/7.9+...+3/59.61
Giải:
S=3/5.7+3/7.9+...+3/59.61
S=3/2.(2/5.7+2/5.7+...+2/59.61)
S=3/2.(1/5-1/7+1/7-1/9+...+1/59-1/61)
S=3/2.(1/5-1/61)
S=3/2.56/305
S=84/305
Chúc bạn học tốt!
`S=3/(5.7)+3/(7.9)+....+3/(59.61)`
`=>2S=3(2/(5.7)+2/(7.9)+....+2/(59.61))`
`=>2S=3(1/5-1/7+.....+1/59-1/61)`
`=>2S=3(1/5-1/61)=168/305`
`=>S=84/305`
Tính nhanh :
3/5.7 + 3/7.9 +..........+ 3/59.61
(Nêu cách làm)
.Cho P=3/5.7+3/7.9+...+3/59.61=3/2.(1/5-1/61)=3/2.56/305=84/305
bài này trong sách giáo khoa chương trình Vnen
3/5.7 + 3/7.9 +....+ 3/59.61 = ?
= 3(1/5.7+1/7.9+...+1/59.61)
= 3/2(2/5.7+2/7.9+...+2/59.61)
= 3/2(1-1/5+1/5-1/7+1/7-1/9+...+1/59-1/61)
= 3/2(1-1/61)=3/2.60/61=90/61
Chẳng biết mk làm đúng ko nữa!
3 / 5.7 + 3 / 7.9 +......+ 3 / 59.61 = ?
\(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}=\frac{3}{2}\cdot\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)=\frac{3}{2}\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=\frac{3}{2}\cdot\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{84}{305}\)
Tính một cách hợp lí: 3/5.7+3/7.9+...3/59.61
Đặt \(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(\Rightarrow A=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)
3/5.7+3/7.9+3/9.11+...3/59.61