C/M:
a) 1/2<1/51+1/52+..+1/100<1
b) 7/12<1/21+1/22+...+1/40<5/6
cho a+b+c=1,1/a +1/b + 1/c=0. c/m:a^2 +b^2+c+2=1
a.Cho A+B+C=0.C/M:A3+B3+C3=3AMC
b.Cho A2+B2+C2=AB+BC+CA.C/M:A=B=C
a, a+b+c=0 => a+b=-c
=>(a+b)3=(-c)3
=>a3+3ab(a+b)+b3=-c3
=>a3-3abc+b3=-c3
=>a3+b3+c3=3abc
b, a2+b2+c2=ab+bc+ca
<=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
<=>(a-b)2+(b-c)2+(c-a)2=0
Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow a=b=c}\)
C/M:
a) Cot α+ \(\dfrac{Sinα}{1+Cos α }\)= \(\dfrac{1}{Sinα }\)
b)\(\dfrac{1}{1-Sinα}\)+\(\dfrac{1}{1+Sinα}\)= \(\dfrac{2}{Cos^{2}α}\)
\(a,VT=cot\alpha+\dfrac{sin\alpha}{1+cos\alpha}\\ =\dfrac{cos\alpha}{sin\alpha}+\dfrac{sin\alpha}{1+cos\alpha}\\ =\dfrac{cos\alpha\left(1+cos\alpha\right)+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{cos\alpha+cos^2\alpha+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{cos\alpha+1}{sin\alpha\left(1+cos\alpha\right)}\\ =\dfrac{1}{sin\alpha}=VP\left(dpcm\right)\)
\(b,VT=\dfrac{1}{1-sin\alpha}+\dfrac{1}{1+sin\alpha}\\ =\dfrac{1+sin\alpha+1-sin\alpha}{\left(1-sin\alpha\right)\left(1+sin\alpha\right)}\\ =\dfrac{2}{1-sin^2\alpha}\\ =\dfrac{2}{cos^2\alpha}=VP\left(dpcm\right)\)
cho a,b,c là độ dài 3 cạnh tam giác thỏa a+b+c=1
c/m:a^2+b^2+c^2<1/2
AD ơi giúp e với nhan
A=1/1+3+1/1+3+5+......+1/1+3+5+...+2017 C/M:A<3/4
Cho A=-2/1*-4/3*-6/5*...*-200/199
C/m:a,A>14
b,A<20
Cho:a/b=b/c.C/M:a2+b2/b2+c2=a/c
Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow b^2=ac\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
⇒a2+b2b2+c2 =a2+acac+c2 =a(a+c)c(a+c) =ac
Đúng 1 k
nha
Cho A=1/1-1/2+1/3-1/4+...+1/19-1/20.
C/M:A=1/11+1/12+...+1/20.
FG
Giúp mk nha
cho A=\(\dfrac{a^2+b^2+c^2-ab-bc-ac}{2}\) la mot so chinh phuong
C/m:a=b=c
1.Cho tam giác ABC vuông tại A có đường cao AH . C/M:
a,AB^2=BC.BH ; AC^2=BC.CH . Từ dố chứng minh định lý py-ta -go
b,AH^2=BH.CH
c,1/AH^2=1/AB^2+1/AC^2
d,AH.BC=AB.AC
Lời giải:
1.
Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}\Rightarrow BA^2=BH.BC$
Tương tự, ta cũng cm được: $\triangle CHA\sim \triangle CAB$ (g.g)
$\Rightarrow CA^2=CH.CB$
Do đó:
$CA^2+CB^2=BH.BC+CH.CB=BC(BH+CH)=BC.BC=BC^2$
(đpcm)
b. Xét tam giác $BHA$ và $AHC$ có:
$\widehat{BHA}=\widehat{AHC}=90^0$
$\widehat{HBA}=\widehat{HAC}$ (cùng phụ $\widehat{BAH}$)
$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)
$\Rightarrow \frac{BH}{AH}=\frac{HA}{HC}$
$\Rightarrow AH^2=BH.CH$
c.
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}$
$=\frac{BC^2}{AB^2.AC^2}=(\frac{BC}{AB.AC})^2=(\frac{BC}{2S_{ABC}})^2$
$=(\frac{BC}{AH.BC})^2=\frac{1}{AH^2}$
.d. Hiển nhiên theo công thức diện tích.