Tìm giá trị x thỏa mãn x^3=-27/343
giá trị x thỏa mãn: x^3=-27/343 là x
Giá trị x thỏa mãn: \(x^3=-\frac{27}{343}\) là x..
\(x^3=\left(-\frac{3}{7}\right)^3\Rightarrow x=-\frac{3}{7}\)
giá trị x thỏa mãn x3=\(\frac{27}{-343}\) suy ra x là
giá trị x thỏa mãn :\(x^3\)=\(-\frac{27}{343}\)là x=?
Gía trị x thỏa mãn :X3=\(\frac{-27}{343}\)
Tìm các giá trị của x, y thỏa mãn: |2x - 27|2011 + (3y + 10)2012 = 0
Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)
⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)
Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy ...
Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm
ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0
(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0
=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10
=>x=13,5 hoặc x=-10/3
vậy .............................
\(\left|2x+27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\forall x;y\)
Dấu ''='' xảy ra \(x=\frac{27}{2};y=-\frac{10}{3}\)
Tìm các giá trị x,y thỏa mãn:|2x - 27|^2011+(3y+10)^2012=0
ai nhanh cho 3 tk
Vì
|2x - 27|2011 ≥ 0
(3y + 10)2012 ≥ 0
=> |2x - 27|2011 + (3y + 10)2012 ≥ 0
Dấu "=" xảy ra <=> |2x - 27|2011 = 0 và (3y + 10)2012 =0
<=> 2x - 27 = 0 và 3y + 10 = 0
=> x = 27/2 và y = - 10/3
Cho x 1 là giá trị thỏa mãn 3 7 + 1 7 : x = 3 14 và x 2 là giá trị thỏa mãn 5 7 + 2 7 : x = 1 . Khi đó, chọn câu đúng
A. x 1 = x 2
B. x 1 < x 2
C. x 1 > x 2
D. x 1 = 2 x 2