giải phương trình 1/x+1/(x+10)=1/12
giải phương trình 1/x+1/x+10=1/12
giải phương trình
1)\(\sqrt{x+4}-\sqrt{1-x}=1\)
2)\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
1/\(\sqrt{x-4}-\sqrt{1-x}=1\)
Để Pt dc xác định
Thì\(\left\{{}\begin{matrix}x-4\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Vì xét trên trục số ta thấy nó loại nhau
Nên Pt này vô nghiệm
1)ĐKXĐ: \(-4\le x\le1\)
\(\sqrt{x+4}-\sqrt{1-x}=1\\ \Rightarrow\sqrt{x+4}=\sqrt{1-x}+1\\ \Rightarrow x+4=1-x+2\sqrt{1-x}+1\\ \Rightarrow2x+2=2\sqrt{1-x}\\ \Rightarrow x+1=\sqrt{1-x}\\ \Rightarrow x^2+2x+1=1-x\\ \Rightarrow x^2+3x=0\\ \Rightarrow x\left(x+3\right)=0\\ \Rightarrow x=-3\)
Vậy x = -3
2)ĐKXĐ: \(-\sqrt{10}\le x\le\sqrt{10}\)
Với x = -3 thì:
0=0(luôn đúng)
Với x khác -3 thì:
\(\left(x+3\right)\sqrt{10-x^2}=x^2-x+12\\ \Rightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x+3\right)\left(x-4\right)\\ \Rightarrow\sqrt{10-x^2}=x-4\\ \Rightarrow10-x^2=x^2-8x+16\\ \Rightarrow2x^2-8x+6=0\\ \Rightarrow x^2-4x+3=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow x\in\left\{1;3\right\}\)
Vậy x\(\in\left\{-3;1;3\right\}\)
Giải phương trình : (1/1*51+1/2*52+.....+1/10*60)x=(1/1*11+1/2*12+.....+1/40*50)
Giải các phương trình sau:
k) \(\dfrac{1}{x}\)+\(\dfrac{1}{x+10}=\dfrac{1}{12}\)
o) \(\dfrac{x}{2x+6}-\dfrac{x}{2x-2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
\(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\)
\(ĐK:x\ne0;-10\)
\(\Leftrightarrow\dfrac{12\left(x+10\right)+12x}{12x\left(x+10\right)}=\dfrac{x\left(x+10\right)}{12x\left(x+10\right)}\)
\(\Leftrightarrow12\left(x+10\right)+12x-x\left(x+10\right)=0\)
\(\Leftrightarrow12x+120+12x-x^2-10x=0\)
\(\Leftrightarrow-x^2+14x+120=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-6\end{matrix}\right.\)
\(o,\dfrac{x}{2x+6}-\dfrac{x}{2x-2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x+3\right)}-\dfrac{x}{2\left(x+1\right)}-\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)-x\left(x+3\right)-2\left(3x+2\right)}{2\left(x+1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow x^2+x-x^2-3x-6x-4=0\)
\(\Leftrightarrow-8x-4=0\)
\(\Leftrightarrow-4\left(2x+1\right)=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(S=\left\{-\dfrac{1}{2}\right\}\)
giải phương trình
\(\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{3}{10}\)
1/ giải phương trình:
a)(x^2-x)/(x^2+x+1)-(x^2-x+2)/(x^2-x-2)=1
b)x^8-2x^4+x^2-2x+2=0
2/ cho 2 số dương thỏa a^10+b^10=a^11+b^11=a^12+b^12. Cm: 2017a=2016b+1
a) Quy đồng bỏ mẫu rồi giai pt ta đc : \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b)\(x=1\)
giải phương trình:
a/x-1/x^2-x+1 - x+/x^2+x+1 = 10/x(x^4+x^2+1)
b/ x+9/10 + x+10/9 = 9/x+10 + 10/x+9
c/ x^2-2x+2/x-1 + x^2-8x+20 = x^2-4x+6/x-2 + x^2-6x +12/x-3
1) tìm số tự nhiên x thõa mãn
1/x + 2015/2 x6+014 = 2014/2013 + 1/x+1
2)giải phương trình
x(1975/8*9 + 1885/9*10 + 1755/10*11 + 1579/11*12 + 6)=1/24
giải phương trình (x+1/x-2)^2x+1/x-3=12(X+1/x-3)^2