SO SÁNH \(A=\frac{2000}{2001}+\frac{2001}{2002}v\text{à}B=\frac{2000+2001}{2001+2002}\)
So sánh giùm mik nha.
a) \(\frac{3}{-4}v\text{à}\frac{-1}{-4}\)
b) \(\frac{15}{17}v\text{à}\frac{25}{27}\)
c) \(\frac{-9}{6}v\text{à}\frac{6}{-4}\)
d) \(\frac{2000}{2001}+\frac{2001}{2002}v\text{à}\frac{2000+2001}{2001+2002}\)
Lm đc bài nào thì giải giúp mik vs nha.
a) \(\frac{3}{-4}=\frac{-3}{4};\frac{-1}{-4}=\frac{1}{4}\)
Vì - 3 < 1 nên \(\frac{-3}{4}< \frac{1}{4}\)
hay \(\frac{3}{-4}< \frac{-1}{-4}\)
Quy đồng mẫu ta được:
15/17=15.27/17.27=405/459
25/27=25.17/27.27=425/459
⇒405/459<425/459⇒15/17<25/27
c) quy đồng
-9/6=-36/24
6/-4=36/-24
tương đương -36/24=-36/24
suy ra -9/6=6/-4
so sánh : A= \(\frac{2000}{2001}+\frac{2001}{2002}\) B= \(\frac{2000+2001}{2001+2002}\)
Ta có:B= \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}\)và \(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
Nên A>B
So sánh hai biểu thức A và B cho biết rằng:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) \(B=\frac{2000+2001}{2001+2002}\)
Ta có: B = \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000}{4003}+\frac{2001}{4003}\)
Ta thấy : \(\frac{2000}{2001}>\frac{2000}{4003}\)(1)
\(\frac{2001}{2002}>\frac{2001}{4003}\) (2)
Từ (1) và (2) cộng vế với vế, ta được :
\(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{4003}+\frac{2001}{4003}\)
hay \(A=\frac{2000}{2001}+\frac{2001}{2002}>B=\frac{2000+2001}{2001+2002}\)
So Sánh 2 Biểu Thức:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\)
\(B=\frac{2000+2001}{2001+2002}\)
B=2000/2001+2002 + 2001/2001+2002
Ta có:2000/2001 > 2000/2001+2002
2001/2002 > 2001/2001+2002
Vậy A >B
So sánh A và B :
A=\(\frac{2000}{2001}\)+\(\frac{2001}{2002}\)
B =\(\frac{2000+2001}{2001+2002}\)
giúp mik vs nhé mik cảm ơn
mình lớp5 nhưng mình bt làm
Xét B=\(\frac{2000+2001}{2001+2002}\)\(=\)\(\frac{2000}{2001+2002}\)\(+\)\(\frac{2001}{2001+2002}\)
Mà \(\frac{2000}{2001}>\frac{2000}{2001+2002}\); \(\frac{2001}{2002}>\frac{2001}{2001+2002}\) \(\Rightarrow\)\(\frac{2000}{2001}+\frac{2001}{2002}\)\(>\frac{2000+2001}{2001+2002}\)
Vậy \(A>B\)
A=1-2000/2001=2001/2001-2000/2001=1/2001
B=1-2000/2001=2001/2001-2000/2001=1/2001
Ta thấy 1/2001=1/2001 Nên 2000/2001=2000/2001
so sanh
\(A\frac{2000}{2001}+\frac{2001}{2002};B\frac{2000+2001}{2001+2002}\)
Ta có:\(B=\frac{2000}{2001+2002}+\frac{2001}{2001-2002}\)
Vì:\(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\left(\frac{2000}{2001}+\frac{2001}{2002}\right)>\left(\frac{2000}{2001-2002}-\frac{2001}{2001+2001}\right)\)
\(\Rightarrow A>B\)
SO SÁNH HAI BIỂU THỨC :
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) \(B=\frac{2000}{2001}+\frac{2001}{2002}\)
Ta xét các phân số trong 2 biểu thức đều bằng nhau :
2000 = 2000 ; 2001 = 2001 ; 2002 = 2002.
Vậy A = B.
Ta xét các phân số trong hai biểu thức bằng nhau nên kết quả của chúng chắc chắn sẽ bằng nhau.
So sánh 2 biểu thức A và B biết rằng:
\(A=\frac{2000+2001}{2001+2002}\)
\(B=\frac{2000+2001}{2001+2002}\)
A = \(\frac{2000+2001}{2001+2002}\)= \(\frac{4001}{4003}\)
B = \(\frac{2000+2001}{2001+2003}=\frac{4001}{4003}\)
vậy A = B
$A=\frac{2000+2001}{2001+2002}$A=2000+20012001+2002
$B=\frac{2000+2001}{2001+2002}$B=2000+20012001+2002
=>A=B
So sánh Avà B, biết rằng:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\)và\(B=\frac{2000+2001}{2001+2002}\)
MÌNH CẦN GẤP
GIÚP MÌNH ĐI
MÌNH TICK CHO