Cho A= 6n-1/3n+2 (n€Z)
a) Tìm n€Z để A có giá trị nguyên
b) Tìm n€Z để A có giá trị nhỏ nhất
Cho số A= 6n-1 / 3n+2
a) Tìm n thuộc Z để A có giá trị Nguyên
b) Tìm n Thuộc Z để A có Giá trị Nhỏ Nhất
\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 = \({\pm 1 , \pm (6n-1)}\)
.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)
.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )
.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )
.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )
Kết luận vậy n = { -1,1 }
cho phân số A = 6n-1/3n+2
a) tìm n thuộc Z để A có giá trị nguyên.
b) tìm n thuộc Z để A có giá trị nhỏ nhất.
A=6n-1/3n+2
a)Tìm n thuộc Z để A có giá trị nguyên
b)Tìm n thuộc Z để A có giá trị nhỏ nhất
a) để A có giá trị nguyên thì
6n-1 chia hết cho 3n+2
6n+4-5 chia hết cho 3n+2
suy ra:2(3n+2)-5 chia hết cho 3n+2
vì 3n+2 chia hết cho 3n+2 nên 2(3n+2) cũng chia hết cho 3n+2
suy ra : 5 chia hết cho 3n+2
suy ra:3n+2 thuộc ước của 5
Ư(5)=1;-1;5;-5
ta có bảng giá trị
3n+2 1 -1 5 -5
n -1/3 -1 1 -7/3
mà A thuộc Z
suy ra:n=1;-1
vậy để A có giá trị nguyên thì
n thuộc 1;-1
b)cậu tự làm nhé
Cho phân số 6n-1/3n+2 (n E Z)
a)Tìm n để A có giá trị nguyên
b)Tìm n để A có giá trị nhỏ nhất
a) \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\inℤ\)mà \(n\inℤ\)nên \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
mà \(n\inℤ\)suy ra \(n\in\left\{-1,1\right\}\).
b) \(A=2-\frac{5}{3n+2}\)có giá trị nhỏ nhất suy ra \(\frac{5}{3n+2}\)có giá trị lớn nhất suy ra \(3n+2\)có giá trị dương nhỏ nhất mà \(n\inℤ\)nên \(3n+2\)dương nhỏ nhất bằng \(2\)tại \(n=0\).
\(minA=2-\frac{5}{2}=-0,5\).
Cho phân số: A=6n-1/3n+2
a,Tìm n thuộc Z để A có giá trị nguyên
b,Tìm n thuộc Z để A có giá trị nhỏ nhất
Cho A = 6n-1/ 3n+2:
a) Tìm n thuộc Z để A có giá trị nguyên.
b) Tìm n thuộc N để A có giá trị nhỏ nhất.
cho phân số A = 6n - 1 trên 3n + 2
a: tìm N thuộc Z để A thuộc Z
b: tìm N thuộc Z để A có giá trị nhỏ nhất
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}\)\(=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
a, Để A thuộc Z <=> 3n + 2 thuộc Ư(5) = {1;-1;5;-5}
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 (loại) | -1 | 1 | -7/3 (loại) |
Vậy n = {-1;1}
b, Để A có giá trị nhỏ nhất <=> \(2-\frac{5}{3n+2}\)có giá trị nhỏ nhất
<=> 3n + 2 là số nguyên âm lớn nhất
<=> 3n + 2 = -1 => n = -1
Khi đó: A = \(\frac{6n-1}{3n+2}=\frac{6.\left(-1\right)-1}{3.\left(-1\right)+2}=\frac{-6-1}{-3+2}=\)\(\frac{-7}{-1}=7\)
Vậy GTNN của A = 7 khi n = -1
Cho A= \(\frac{6n-1}{3n+2}\)
a) Tìm n thuộc Z để A có giá trị nguyên
b) Tìm n thuộc Z để A có giá trị nhỏ nhất
Cho A=6n-1/3n+2
a,tìm n thuộc Z để A nguyên
b,tìm n thuộc Z để A tối giản
c,tìm n thuộc Z để A có giá trị nhỏ nhất
Vào đây:
Câu hỏi của LE NGUYEN HUYEN MI - Toán lớp 6 - Học toán với ...