Xác định n thuộc N để phân số sau tối giản: n+8/2n-5
Xác định n thuộc N để phân số sau tối giản: n+8/2n-5
Gọi \(\text{ƯCLN( n+8 ; 2n+5 )}\) \(=d\left(d\in\text{N*}\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{n + 8 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\text{2n + 16 ⋮ d}\\\text{2n - 5 ⋮ d}\end{matrix}\right.\)
\(\Rightarrow\) \(\text{2n + 16 – (2n-5) ⋮ d}\)
\(\Rightarrow\text{21 ⋮ d }\)
\(\Rightarrow\) \(\text{d }\in\left\{\text{1 ; 3 ; 7}\right\}\)
Nếu \(\text{d = 3}\)
\(\Rightarrow\) \(\text{n+8 ⋮ 3}\)
\(\Rightarrow\) \(\text{n + 8 = 3k ( k ∈ N*)}\)
\(\Rightarrow\) \(\text{n = 3k – 8}\)
\(\Rightarrow\) \(\text{2n – 5 = 2(3k – 8) – 5 = 6k – 16 – 5 = 6k – 21 = 3(2k – 7) ⋮ 3}\)
Vậy n khác \(\text{2k – 7}\) thì \(\text{n+8/2n -5}\) tối giản
xác định n thuộc N để phân số sau tối giản n+8/2n-5
Xác định n thuộc N để phân số sau tối giản: n+8/2n-5
mik thì trúng đề thì có con này, mik ko bt làm những thầy cô giáo mik bảo có vô số n thuộc n để p/s tối giản
câu 2:xác định n thuộc N để phân số sau tối giản: n+8/ 2.n-5
cái này chỉ có thể dùng phép thử rồi tính ra n=1
nếu n=1 thì n+8=9 và 2.n-5=-3 => phân số này không tối giản (loại)
nếu n=2 thì n+8=10 và 2.n-5=-1 = phân số này không tối giản (loại)
nếu n=3 thì n+8=11 và 2.n-5=1 = phân số này không tối giản (loại)
.................. cứ thử như vậy
mà hình như không có số nào hết đó (hên sui !!!)
Xác định n \(\varepsilon\) N đẻ phân số sau tối giản: n+8/2n-5
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
xác định n để ps sau tối giản
\(\frac{n+8}{2n-5}\)
xác định n thuộc N để phân số sau tối giản\(\frac{n+8}{2n-5}\)
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.