(1-1/10):(1+1/10):(1+1/11):(1+1/12): ... :(1+1/500)
(1-1/10):(1+1/10):(1+1/11):(1+1/12): ... :(1+1/500)
-Mình làm rồi. Bạn xem bài đăng lúc nãy của bạn,
[92--1/9-2/10-3/11-4/12-92/100] :[1/45+1/50+1/55+1/60+1/500]
1 tính nhanh
a 1/1*10+1/2*15+1/3*20+...+1/98*495+1/99*500
b 11/12 +19/20+29/30 +41/42+55/56
Tính A=92-1/9-2/10-3/11-4/12-5/3-...-91/99-92/100 / 1/45+1/50+1/55+...+1/495+1/500
So Sánh : \(\dfrac{10^{11}-1}{10^{12}-1}\)và\(\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)
\(\Leftrightarrow A< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\dfrac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
Vậy...
Vì \(10^{11}-1< 10^{12}-1\)
\(\Rightarrow\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10^{10}+1}{10^{11}+1}\)
Bài 1: So sánh
a, -203 và 1/2017
b, 7/29 và 12/47
c, 1011 + 1/ 1012 + 1 và 1012 +1/ 1013 + 1
Bài 2: Tìm x, biết:
a, 500 < 2x < 100
b, 350 < 2.3x < 1500
Bài1:
a)Ta có:
\(-203< 0;\dfrac{1}{2017}>0\)
Nên \(-203< \dfrac{1}{2017}\)
b)\(\dfrac{7}{29}và\dfrac{12}{47}\)
c)Đặt \(A=\dfrac{10^{11}+1}{10^{12}+1}\);\(B=\dfrac{10^{12}+1}{10^{13}+1}\)
Ta có:\(10A=\dfrac{10^{12}+1+9}{10^{12}+1}=1+\dfrac{9}{10^{12}+1}\)
\(10B=\dfrac{10^{13}+1+9}{10^{13}+1}=1+\dfrac{9}{10^{13}+1}\)
Do đó:\(10A>10B\Rightarrow A>B\)
Bài2:
a)\(500>2^x>100\)
Ta có:\(100< 2^7< 2^8< 500\)
\(\Rightarrow x\in\left\{7;8\right\}\)
Vậy...
Câu sau tương tự
a) Ta có: \(-203< 0;\dfrac{1}{2017}>0\)
\(\Rightarrow\dfrac{1}{2017}>-203\)
so sánh
a) 1/2^2+1/2^3+...1/2^2014 và 1
b)A=10^11-1/10^12-1 và B=10^10+1/10^11+1
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
so sánh 10 mũ 11-1/10 mũ 12-1 va 10 mu 10-1/10 mu 10 +1/10 mu 11-1
tính nhanh
1/10*11+1/11*12+1/12*13+1/13*14+..........+1/78*79
8/7*9+8/9*11+8/11*13+........+8/133*135
12/8*11+12/11*14+12/14*17+.........+12/503*506
1/4*7+1/7*10+1/10*13+1/13*16+........+1/391*394
4/5*8+4/8*11+4/11*14+.........+4/602*605
1+1/3+1/6+1/6+1/10+1/15+..........+1/820
các bạn giải cho mình bài này với ạ mình đang rất cần , huhu
là sao bạn NGUYỄN HỮU CHUNG
\(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+........+\frac{1}{78.79}\)
\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+............+\frac{1}{78}-\frac{1}{79}\)
\(=\frac{1}{10}-\frac{1}{79}=\frac{69}{790}\)