10 x 150 =
Tìm x \(\in Z\) biết
\(5-x-10-\left(-15\right)\)
\(10-\left(x\right)=7\)
\(\left(x-5\right)-7=19-21\)
\(2x+\left(x\right)=3x\)
\(19-x+\left(x-4\right)=0\Leftrightarrow\left(x-4\right)=x-19\)
\(\left|x-10\right|+10=x\)
\(\left|x-3\right|=x=3\)
\(\left|x\right|+\left|x+1\right|+\left|x+2\right|=24x\)
(\(x+\sqrt{x^2+10}\))(\(y+\sqrt{y^2+10}\))=10.tính S=x^2015+y^2015
\(\left(x+\sqrt{x^2+10}\right)\left(y+\sqrt{y^2+10}\right)=10\)(1)\(\Leftrightarrow\left(x+\sqrt{x^2+10}\right)\left(x-\sqrt{x^2+10}\right)\left(y+\sqrt{y^2+10}\right)=10\left(x-\sqrt{x^2+10}\right)\)
\(\Leftrightarrow-10\left(y+\sqrt{y^2+10}\right)=10\left(x-\sqrt{x^2+10}\right)\)\(\Leftrightarrow y+\sqrt{y^2+10}=\sqrt{x^2+10}-x\)(2)
TA CÓ: (1)\(\Leftrightarrow\left(x+\sqrt{x^2+10}\right)\left(y+\sqrt{y^2+10}\right)\left(y-\sqrt{y^2+10}\right)=10\left(y-\sqrt{y^2+10}\right)\)
Chứng minh tương tự sẽ được:\(x+\sqrt{x^2+10}=\sqrt{y^2+10}-y\)
cộng 2 vế của phương trình (2) va (3) ta được:\(y=-x\)
Bạn thay vào phương trình (1) rồi tìm x;y Sau đó tính S
tìm x biết x thuộc N:
a,x\(^{10}\)=1\(^x\)
b,x\(^{10}\)=x
c,(2x-15)\(^5\)=(2x-15)\(^3\)
a)vì 1^x luôn =1 nên x^10=1. Vậy x=1
b)Vì x^10=x nên x =0 hoặc 1
c) x=8
\(\frac{x+2}{10^{10}}\)+ \(\frac{x+2}{11^{11}}\)= \(\frac{x+2}{12^{12}}\)+ \(\frac{x+2}{13^{13}}\)
=> x = ?????????
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)
Vì \(\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)\ne0\)
=> x+2 =0 => x =-2
Tìm GTNN:
A = 2.\(\left(x+2\right)^{10}\)+ 3
B = \(x^{10}\)+ \(x^8\)+ \(x^6\)+\(x^4\)+\(x^2\)+ x + 1
Phân tích đa thức thành nhân tử
\(x^{10}+x^2+1\)
\(x^{11}+x^4+1\)
\(x^{10}+x^5+1\)
\(x^7+x^2+1\)
\(x^7+x^2+1\)
=\(x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x^2+x-x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5-x^4+x^2-x+1\right)\left(x^2+x+1\right)\)
Xong rồi đó
CMR: \(x^{50}+x^{20}+x^{10}\) chia hết cho \(x^{20}+x^{10}+1\)
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Biến đổi \(x^{50}+x^{20}+x^{10}\) ra tích có chứa thừa số \(x^{20}+x^{10}+1\) bạn nhé
tìm x biết\(\frac{x+2}{10^{10}}\) + \(\frac{x+2}{11^{11}}\) = \(\frac{x+2}{12^{12}}\)\(\frac{x+2}{13^{13}}\)
Ta có
\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\)
<=>\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
<=>\(\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}+\frac{1}{12^{12}}+\frac{1}{13^{13}}\right)=0\)
Vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}+\frac{1}{12^{12}}+\frac{1}{13^{13}}\ne0\)
=>\(x+2=0\)
<=>\(x=-2\)
Tick nha quachtxuanhong23
\(\frac{7}{8}\)- \(\frac{9}{10}\)x \(x\) =\(\frac{3}{10}\)
7/8 - 9/10 . x = 3/10
9/10 . x = 7/8 - 3/10
9/10 . x = 23/40
x = 9/10 : 23/40
x = 36/23
\(\frac{x-85}{15}\)+\(\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)(HD:10=1+2+3+4)
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Leftrightarrow\) \(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Leftrightarrow\) \(\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Leftrightarrow\) \(\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Leftrightarrow\) \(\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\) \(\left(\text{ *}\right)\)
Vì \(\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)\ne0\) nên từ \(\left(\text{ *}\right)\) \(\Rightarrow\) \(x-100=0\) \(\Leftrightarrow\) \(x=100\)
Vậy, tập nghiệm của pt là \(S=\left\{100\right\}\)
Mình giải rồi nhưng mạng gặp sự cố nên lời giải chắc mất rồi