Bài 6 : Tim tong sau :
S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
Bài 6 : Tim tong sau :
S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
Ta có: S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340 + 1/460 + 1/598 + 1/754 + 1/928
=> S = 1/2.5 + 1/5.8 + 1/8.11 + ... + 1/26.29 + 1/29.32
Nhân 2 vế với 3 và áp dụng công thức tách 1 phân số thành hiệu 2 phân số: x/n.(n + x) = 1/n - 1/(n + x)
=> 3.S = 3.(1/2.5 + 1/5.8 + 1/8.11 + ... + 1/26.29 +1/29.32)
=> 3.S = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/26.29 + 3/29.32
=> 3.S = 1/2 - 1/ 5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/26 - 1/29 + 1/29 - 1/32
=> 3.S = 1/2 - 1/32
=> 3.S = 15/32
=> S = 5/32
@Cre: G+
S=1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 + 1/14.17 + 11/17.20
S=1/3.(1/2-1/5+1/5-1/8+.......+1/17 - 1/20)
S=1/3.(1/2-1/20)
S=1/3.9/20
S=3/20
S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
Tính tổng S và so sánh với 0,1 biết : S= 1/10+1/40+1/88+1/154+1/238+1/340
\(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{184}+\frac{1}{238}+\frac{1}{340}=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}>\frac{2}{20}=\frac{1}{10}=0,1\)
vậy S>0,1
Tính tổng S và so sánh với 0,1 biết S=1/10+1/40+1/88+1/154+1/238+1/340
S = \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
S = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
S = \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{17}-\frac{1}{20}\right)\)
S = \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{1}{3}.\frac{9}{20}\)
S = \(\frac{3}{20}\)
S = 0,15 > 0,1
S=\(\frac{3}{20}\)>0,1
li ke cho mình nha
A=1/10+1/40+1/88+1/154+1/238+1/340
Đặt \(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
=> \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\) (dấu . có nghĩa là nhân)
=> \(3A=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Đây là kiến thức lớp 6 nhá =)) bạn mà có chỗ nào ko hiểu thì hỏi ng thầy cô giạy bạn ý
1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+\frac{1}{17\cdot20}\)
\(=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+\frac{3}{17\cdot20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\cdot\frac{9}{20}\)
\(=\frac{3}{20}\)
A = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
A = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 + 1/14.17 + 1/17.20
3 A = 3/2.5 + 3/5.8 + 3/8.11 + ... + 3/17.20
3A = 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/17 - 1/20
3A = 1/2 - 1/20
3A = 9/20
A = 9/20 : 2
1/10+1/40+1/88+1/154+1/238+1/340
=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
=1/2-1/5+1/5-1/8+1/8-...+1/17-1/20
=1/2-1/20
=9/20
k cho mình nha thanks bạn
tính nhanh : 1/10+1/40+1/88+1/154+1/238+1/340
A=1/10+1/40+1/88+1/154+1/238+1/340 (làm nhanh giúp mình nhé)
Tính tổng A =1/10+1/40+1/88+1/154+1/238+1/340
\(A=\frac{3}{3}.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{3}{20}\)