cho tam giac ABC co goc B+goc C=60do,phan giac BD.Tren AD lay diem O.Tren tia doi cua tia AC lay diem M sao cho goc ABM=goc ABO.Tren tia doi cua tia AB lay mot diem N sao cho goc CAN=goc ACO.Chung minh rang :
a) AM=an
b)Tam giac MON deu
bai 1:cho tam giac ABC vuong tai A,phan giac AD tren canh BC lay diem H sao cho BH=BA
a)CMR:DH vuong goc BC
b)biet gocADH=110 đo.Tinh goc ABD
bai2:cho tam giac ABC co AB=AC=BC.Cac tia phan giac BD va CE cat nhau tai O.CMR:
a)BD vuong goc AC va CE vuong goc AB
b)OA=OB=OC
c)goc AOB=goc BOC=goc COA;tu do suy ra so do cua moi goc ay
bai3:cho O la mot diem cua AB.tren hai nua mat phang doi nhau bo AB ve cac tia Ax va By cung vuong goc voi AB.Lay diem M tren tia Ax,diem N tren tia By sao cho AM=BN.CMR:o la trung diem cua MN
bai 4:cho tam giac ABC vuong tai A co goc C=45 do.Ve phan giac AD.Tren tia doi cua tia AD lay diem E sao cho AE=BC.Tren tia doi cua tia CA lay diem F sao cho CF=AB.CMR:BE=BF va BE vuong goc BF
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
cho tam giac ABC tren tia doi cua tia AB lay diem E tren tia doi cua tia AC lay diem D sao cho tia phan giac cua goc C va goc AED cat nhau tai I. Tinh goc CIE theo cac goc ABC va ADE
cho tam giac ABC co goc B va goc C la hai goc nhon. tren tia doi cua tia AB lay diem D sao cho AD = AB, tren tia doi cua tia AC lay diem E sao cho AE=AC
Chung minh BE=CD
bai1:cho diem A nam trong goc nhon xOy ke AH vuong goc Ox,tren tia doi cua tia HA lay diem B sao cho HB=HA.Ke AK vuong goc Oy;tren tia doi cua tia KA lay diem C sao cho KC=KA.CMR:
a)OB=OC
b)biet goc xOy=alpha.Tinh goc BOC
c)goc xOy bang bao nhieu do thi O se la trung diem cua BC?
bai2:cho tam giac ABC co AC>AB,tia phan giac cua goc A cat BC o D.Tren AC lay diem E sao cho AE=AD.CMR:AD vuong goc AE
bai3:cho m la duong trung truc cua AB,C la diem thuoc M.Goi Cx la tia doi cua tia CA,Cy la tia phan giac cua goc BCx.CMR:Cy vuong goc voi m
bai 2: cho tam giac ABC co goc A=90 do.Goi M la trung diem cua AC.tren tia BM lay diem N sao cho M la trung diem cua doan BN.CMR:a,CN vuong goc AC va CN=AB b,AN=BC va AN song song BC
bai 3:cho tam giac ABC co goc A=90 do va AB nho hon AC.tren canh AC lay diem D sao cho AD=AB.tren tia doi cua tia AB lay diem E sao cho AE=AC.CMR:a)DE song song BC b)DE vuong goc BC c)biet 4.B=5.C.tinh goc AED
Bài 2:
a) Xét 2 \(\Delta\) \(ABM\) và \(CNM\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)
\(BM=NM\) (vì M là trung điểm của \(BN\))
=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)
=> \(AB=CN\) (2 cạnh tương ứng)
=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)
Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(90^0+\widehat{NCM}=180^0\)
=> \(\widehat{NCM}=180^0-90^0\)
=> \(\widehat{NCM}=90^0.\)
=> \(\widehat{BAM}=\widehat{NCM}=90^0\)
=> \(CN\perp AB.\)
b) Xét 2 \(\Delta\) \(AMN\) và \(CMB\) có:
\(AM=CM\) (như ở trên)
\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MN=MB\) (như ở trên)
=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)
=> \(AN=BC\) (2 cạnh tương ứng)
=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AN\) // \(BC.\)
Chúc bạn học tốt!
cho tam giac can ABC co goc A =45do,AB=AC. tu trung diem I cua canh AC ke duong vuong goc voi AC. cat duong thang ac tai M. tren tia doi cua tia AM lay diem N sao cho AM=AN.chung minh goc AMC= ACB.b,tam giac ABM=CAN.c,tam giac MNC vuong can tai A
cho tam giac ABC co goc a nhon M la trung diem cua BC tren tia doi cua tia MA lay diem D sao cho MA=MD chung minh BAM=CDM chung minh AC=AD tren nua mat phang Bo AB ko chua C ve tia Ax vuong goc AB tren nua mat phang bo AC ko chua B ve tia Ay vuong goc AC tren tia Ax lay Diem P sao cho AP=AB tren tia Ay lay diem Q sao cho AQ=AC chung minh tam giac ABQ= tam giac APC goi giao diem cua DA va PQ la K chung minh AK vuong goc PQ
cho tam giac ABC. Goi M la trung diem BC va AM la tia phan giac cua goc A. Ve MI vuong goc AB, MH vuong goc AC. Chung minh rang:
a, MI = MH
b, Tam giac ABC can
c, Cho AB = 17 cm, AM = 15 cm. Tinh BC
d, Tren tia doi cua tia BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD = CE. Chung minh: tam giac AED can
Cho tam giac ABC can tai A. Tren tia doi cua tia BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD = CE.
a) CM: tam giac ADE can.
b) Goi M la trung diem cua BC. CM: AM la tia phan giac cua goc DAE va AM vuong DE.
c) Tu B ke BH vuong goc AD (H€AD). Tu C ke CK vuong goc AE (K€AE). CM: BH=CK.
d) CM: Ba duong thang AM,BH,CK gap nhau tai mot diem.
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE