a,b,c,d>0 chung minh rang 2< (a+b)/(a+b+c)+(b+c)/(b+c+d)+(c+d)/(c+d+a)+(d+a)/(d+a+b)<3
cho ti le thuc voi a,b,c,d thuoc z b,d khac 0 chung minh rang a^2 + b^2 phần c^2 + d^2 =a*b phần c*d
Đặt:a/b=c/d=k =>a=bk,c=dk
Thay vào vế trái ta có:
a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)
Thay vào vế phải ta có:
ab/cd=b^2.k/d^2.k=b^2/d^2(2)
Từ 1 và 2 =>đpcm
cho a/b=b/c=c/d=d/a trong đó a+b+c+d khác 0 chung minh rang a^20
Cho a/b = b/c = c/d (b,c,d # 0). Chung minh rang
a^3 + b^3 + c^3/ b^3+ c^3 + d^3 =a/b
chung minh rang tu ti le thuc a/b=c/d (a-b khac 0,c-d khac 0) ta co the suy ra ti le thuc a+b/a-b=c+d/c-d
cac ban cho minh hoi
chung to rang neu a/b<c/d (b>0,d>0) thi a/b<a+c/b+d<c/d
vì b>0 ,d>0 ,a/b<c/d
suy ra ad<bc
suy ra ad+ab<bc+ab
suy ra a(b+d) <b(a+c)suy ra a/b <a+c/b+d
lại có ad <bc suy ra ad+cd <bc+cd
suy ra d(a+c )<c(b+d)suy ra a+c/b+d <c/d
vậy a/b <a+c/b+d<c/d
cho a,b,c,d thuoc Z va 0<a<b<c<d chung minh rang neu a/bc/d thi a+d>b+c
CHo ti le thuc a/b=c/d Chung minh rang (a+b/c+d)^2=a^2+b^2/c^2+d^2
cho ti le thuc a/b=c/d .chung minh rang a*b/c*d= (a=b)^2/(c*d)^2
chõa+d=c+b và a^2+d^2=b^2+c^2
chung minh rang a/b=c/d