Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nanako
Xem chi tiết
Hoang Khoi
Xem chi tiết
Alayna
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2022 lúc 19:21

\(=-\dfrac{1}{2}\int\dfrac{d\left(4-2x\right)}{\left(4-2x\right)^5}=\dfrac{1}{8.\left(4-2x\right)^4}+C\)

Sách Giáo Khoa
Xem chi tiết
Crackinh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 17:14

1.

\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)

Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)

\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)

\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)

\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)

Nguyễn Việt Lâm
5 tháng 3 2022 lúc 17:15

2.

\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)

\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)

\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)

Lê Song Phương
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:36

Cách làm cơ bản của dạng này:

Cho hàm số y=f(x) liên tục trên R\ {0; -1} thỏa mãn f(1) =-2ln2 và\(x\left(x+1\right)f'\left(x\right)+f\left(x\right)=x^... - Hoc24

Ngọc Hưng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Akai Haruma
9 tháng 7 2017 lúc 0:38

a)

Đặt \(u=\sqrt{x-3}\Rightarrow x=u^2+3\)

\(I_1=\int (2x-3)\sqrt{x-3}dx=\int (2u^2+3)ud(u^2+3)=2\int (2u^2+3)u^2du\)

\(\Leftrightarrow I_1=4\int u^4du+6\int u^2du=\frac{4u^5}{5}+2u^3+c\)

b)

\(I_2=\int \frac{xdx}{\sqrt{(x^2+1)^3}}=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{(x^2+1)^2}}\)

Đặt \(u=\sqrt{x^2+1}\). Khi đó:

\(I_2=\frac{1}{2}\int \frac{d(u^2)}{u^3}=\int \frac{udu}{u^3}=\int \frac{du}{u^2}=\frac{-1}{u}+c\)

c)

\(I_3=\int \frac{e^xdx}{e^x+e^{-x}}=\int \frac{e^{2x}dx}{e^{2x}+1}=\frac{1}{2}\int\frac{d(e^{2x}+1)}{e^{2x}+1}\)

\(\Leftrightarrow I_3=\frac{1}{3}\ln |e^{2x}+1|+c=\frac{1}{2}\ln|u|+c\)

Akai Haruma
10 tháng 7 2017 lúc 1:18

d)

\(I_4=\int \frac{dx}{\sin x-\sin a}=\int \frac{dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x+a}{2}-\frac{x-a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x-a}{2} \right )dx}{2\sin \left ( \frac{x-a}{2} \right )}+\frac{1}{\cos a}\int \frac{\sin \left ( \frac{x+a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\left ( \ln |\sin \frac{x-a}{2}|-\ln |\cos \frac{x+a}{2}| \right )+c\)

e)

Đặt \(t=\sqrt{x}\Rightarrow x=t^2\)

\(I_5=\int t\sin td(t^2)=2\int t^2\sin tdt\)

Đặt \(\left\{\begin{matrix} u=t^2\\ dv=\sin tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2tdt\\ v=-\cos t\end{matrix}\right.\)

\(\Rightarrow I_5=-2t^2\cos t+4\int t\cos tdt\)

Tiếp tục nguyên hàm từng phần \(\Rightarrow \int t\cos tdt=t\sin t+\cos t+c\)

\(\Rightarrow I_5=-2t^2\cos t+4t\sin t+4\cos t+c\)

Akai Haruma
10 tháng 7 2017 lúc 2:30

g)

\(I_6=\int x\ln \left ( \frac{x}{x+1} \right )dx=\int x\ln xdx-\int x\ln (x+1)dx\)

Đặt \(\left\{\begin{matrix} u=\ln x\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x}\\ v=\frac{x^2}{2}\end{matrix}\right.\Rightarrow \int x\ln xdx=\frac{x^2\ln x}{2}-\int \frac{xdx}{2}\)

\(\Leftrightarrow \int x\ln xdx=\frac{x^2\ln x}{2}-\frac{x^2}{4}+c\)

Tương tự, \(\int x\ln (x+1)dx=\frac{x^2\ln (x+1)}{2}-\int \frac{x^2}{2(x+1)}dx\)

\(=\frac{x^2\ln (x+1)}{2}-\frac{x^2}{4}+\frac{x}{2}-\frac{\ln (x+1)}{2}+c\)

Suy ra \(I_5=\frac{x^2}{2}\ln \frac{x}{x+1}+\frac{1}{2}\ln|x+1|-\frac{x}{2}+c\)