Tính nguyên hàm \(\int e^x\left(2-x\right)dx\)
Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính :
a) \(\int x\ln\left(1+x\right)dx\)
b) \(\int\left(x^2+2x-1\right)e^xdx\)
c) \(\int x\sin\left(2x+1\right)dx\)
d) \(\int\left(1-x\right)\cos xdx\)
a) Áp dụng phương pháp tìm nguyên hàm từng phần:
Đặt u= ln(1+x)
dv= xdx
=> ,
Ta có: ∫xln(1+x)dx =
=
b) Cách 1: Tìm nguyên hàm từng phần hai lần:
Đặt u= (x2+2x -1) và dv=exdx
Suy ra du = (2x+2)dx, v = ex
. Khi đó:
∫(x2+2x - 1)exdx = (x2+2x - 1)exdx - ∫(2x+2)exdx
Đặt : u=2x+2; dv=exdx
=> du = 2dx ;v=ex
Khi đó:∫(2x+2)exdx = (2x+2)ex - 2∫exdx = ex(2x+2) – 2ex+C
Vậy
∫(x2+2x+1)exdx = ex(x2-1) + C
Cách 2: HD: Ta tìm ∫(x2-1)exdx. Đặt u = x2-1 và dv=exdx.
Đáp số : ex(x2-1) + C
c) Đáp số:
HD: Đặt u=x ; dv = sin(2x+1)dx
d) Đáp số : (1-x)sinx - cosx +C.
HD: Đặt u = 1 - x ;dv = cosxdx
Tính nguyên hàm I = \(\int\left(x^2+2x\right)ln\left(3x+1\right)dx\)
Áp dụng phương pháp tính nguyên hàm từng phần, hãy tính :
a) \(\int\left(1-2x\right)e^xdx\)
b) \(\int xe^{-x}dx\)
c) \(\int x\ln\left(1-x\right)dx\)
d) \(\int x\sin^2xdx\)
e) \(\int\ln\left(x+\sqrt{1+x^2}\right)dx\)
g) \(\int\sqrt{x}\ln^2xdx\)
h) \(\int x\ln\dfrac{1+x}{1-x}dx\)
\(\int tan\left(x\right)-ln^{15}\left(cos\left(x\right)\right)dx\)
\(\int\dfrac{x^4+x^2+1}{2x^3+5x^2-7}dx\)
tính nguyên hàm , ai giúp mình 2 bài này với hoặc 1 bài thôi cũng đc ạ , xin cảm ơn nhiều.
Tính nguyên hàm \(\int xln\left(x+1\right)dx\)
\(\left\{{}\begin{matrix}u=ln\left(x+1\right)\\dv=xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x+1}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow\int xln\left(x+1\right)dx=\dfrac{1}{2}x^2.ln\left(x+1\right)-\dfrac{1}{2}\int\dfrac{x^2}{x+1}dx\)
\(\int\dfrac{x^2dx}{x+1}=\int\left(x-1\right)dx+\int\dfrac{dx}{x+1}\)
P/s: Tất cả đã về dạng cơ bản, bạn tự làm nốt ạ
tính nguyên hàm
I=\(\int\left(x.\log_3x\right)dx\)
Tìm nguyên hàm của các hàm số sau:
a) \(\int\left(6x-\dfrac{1}{sin^2x}+1\right)dx\)
b) \(\int\dfrac{x^3+2x^2-1}{x^2}dx\)
Tính nguyên hàm các hàm số sau:
1. \(I=\int\dfrac{cos^2x}{sin^8x}dx\)
2. \(I=\int\left(e^{sinx}+cosx\right)cosxdx\)
1.
\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)
Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)
\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)
\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)
\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)
2.
\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)
\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)
\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)
Tìm các nguyên hàm sau đây bằng các phép hữu tỉ hóa
a) \(I_1=\int\frac{e^{3x}}{e^2+2}dx\)
b) \(I_2=\int\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}dx\)
c) \(I_1=\int\frac{1}{x^2-1}\left[\sqrt[3]{\left(\frac{x+1}{x-1}\right)^5}\right]dx\)
a) Dùng phương pháp hữu tỉ hóa "Nếu \(f\left(x\right)=R\left(e^x\right)\Rightarrow t=e^x\)" ta có \(e^x=t\Rightarrow x=\ln t,dx=\frac{dt}{t}\)
Khi đó \(I_1=\int\frac{t^3}{t+2}.\frac{dt}{t}=\int\frac{t^2}{t+2}dt=\int\left(t-2+\frac{4}{t+2}\right)dt\)
\(=\frac{1}{2}t^2-2t+4\ln\left(t+2\right)+C=\frac{1}{2}e^{2x}-2e^x+4\ln\left(e^x+2\right)+C\)
b) Hàm dưới dấu nguyên hàm
\(f\left(x\right)=\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}=R\left(x;x^{\frac{1}{2}},x^{\frac{2}{3}}\right)\)
q=BCNN(2;3)=6
Ta thực hiện phép hữu tỉ hóa theo :
"Nếu \(f\left(x\right)=R\left(x:\left(ã+b\right);\left(ax+b\right)^{r2},....\right),r_k=\frac{P_k}{q_k}\in Q,k=1,2,...,m\Rightarrow t=\left(ax+b\right)^{\frac{1}{q}}\),q=BCNN \(\left(q_1,q_2,...,q_m\right)\)"
=> \(t=x^{\frac{1}{6}}\Rightarrow x=t^{6,}dx=6t^5dt\)
Khi đó nguyên hàm đã cho trở thành :
\(I_2=\int\frac{t^3}{t^6-t^4}6t^{5dt}=\int\frac{6t^4}{t^2-1}dt=6\int\left(t^2+1+\frac{1}{t^2-1}\right)dt\)
\(=6\int\left(t^2+1\right)dt+2\int\frac{dt}{\left(t-1\right)\left(t+1\right)}=2t^3+6t+3\int\frac{dt}{t-1}-3\int\frac{dt}{t+1}\)
\(=2t^2+6t+3\ln\left|t-1\right|-3\ln\left|t+1\right|+C=2\sqrt{x}+6\sqrt[6]{x}+3\ln\left|\frac{\sqrt[6]{x-1}}{\sqrt[6]{x+1}}\right|+C\)
c) Hàm dưới dấu nguyên hàm có dạng :
\(f\left(x\right)=R\left(x;\left(\frac{x+1}{x-1}\right)^{\frac{2}{3}};\left(\frac{x+1}{x-1}\right)^{\frac{5}{6}}\right)\)
q=BCNN (3;6)=6
Ta thực hiện phép hữu tỉ hóa được
\(t=\left(\frac{x+1}{x-1}\right)^{\frac{1}{6}}\Rightarrow x=\frac{t^6+1}{t^6-1},dx=\frac{-12t^5}{\left(t^6-1\right)^2}dt\)
Khi đó hàm dưới dấu nguyên hàm trở thành
\(R\left(t\right)=\frac{1}{\left(\frac{t^6+1}{t^6-1}\right)^2-1}\left[t^4-t^5\right]=\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right)\)
Do đó :
\(I_3=\int\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right).\frac{-12t^5}{\left(t^6-1\right)}dt=3\int\left(t^4-t^3\right)dt\)
\(=\frac{5}{3}t^5-\frac{3}{4}t^4+C=\frac{3}{5}\sqrt[6]{\left(\frac{x+1}{x-1}\right)^5}-\frac{3}{4}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}+C\)