Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thảo Vii
Xem chi tiết
soyeon_Tiểu bàng giải
23 tháng 7 2016 lúc 10:46

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau

Câu b lm tương tự

agelina jolie
Xem chi tiết
Đinh Tuấn Việt
7 tháng 6 2016 lúc 13:57

a) Đặt ƯCLN(n+1; 2n+3) = d

=> (2n + 3) - (n + 1) chia hết cho d

=> (2n + 3) - [2.(n + 1)] chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên \(\frac{n+1}{2n+3}\) tối giản

b) Đặt ƯCLN(2n+3; 4n+8) = d

=> (4n + 8) - (2n + 3) chia hết cho d

=> (4n + 8) - [2.(2n + 3)] chia hết cho d

=> (4n + 8) - (4n + 6) chia hết cho d

=> 2 chia hết cho d => d \(\in\) {1; 2}

Nhưng d khác 2 vì d là ước chung của 2 số lẻ nên d = 1

Do ƯCLN(2n+3; 4n+8) = 1 nên \(\frac{2n+3}{4n+8}\) tối giản 

Phạm Tuấn Kiệt
7 tháng 6 2016 lúc 15:11

a) \(\frac{n+1}{2n+3}\)

Đặt ƯCLN(n+1; 2n+3) = d

=> n + 1 \(⋮d\) và 2n + 3 \(⋮d\)

=> (2n + 3) - (n + 1) \(⋮d\)

=> (2n + 3) - [2.(n + 1)] \(⋮d\)

=> (2n + 3) - (2n + 2) \(⋮d\)

=> 1 \(⋮d\)

=> d = 1

Do ƯCLN(n+1; 2n+3) = 1 nên phân số \(\frac{n+1}{2n+3}\) tối giản

b) \(\frac{2n+3}{4n+8}\)

Đặt ƯCLN(2n+3;4n+8) = d

=> 2n+3 \(⋮d\) và 4n+8\(⋮d\)

=> (4n + 8) - (2n + 3) \(⋮d\)

=> (4n + 8) - [2.(2n + 3)] \(⋮d\)

=> (4n + 8) - (4n + 6) \(⋮d\)

=> 2 chia hết cho d

=> d {1; 2}

Vì 2n + 3 là số lẻ, 4n + 8 là số chẵn nên ƯC(2n+3;4n+8) là 1 số lẻ

=> \(d\ne2\Rightarrow d=1\)

Do ƯCLN(2n+3; 4n+8) = 1 nên phân số \(\frac{2n+3}{4n+8}\) tối giản 

vuong hien duc
Xem chi tiết
Kiên-Messi-8A-Boy2k6
2 tháng 6 2018 lúc 8:33

Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=1;2\)

\(+d=2\Rightarrow2n+3⋮2\)

Mak 2n+3 ko chia hết cho 2

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\Rightarrowđpcm\)

Đỗ Mạnh Huy
Xem chi tiết
Âu Khánh An
24 tháng 7 2020 lúc 11:17

a) Vì phân số n+1/2n+3 tối giản với mọi phân số nên ƯCLN(n+1; 2n+3) =1. Gọi ƯCLN(n+1; 2n+3) = d

=> n+1 \(⋮\)d

2n+3 \(⋮\)d

=> 2(n+1) \(⋮\)d

2n+ 3 \(⋮\)d

=> 2n+2 \(⋮\)d

2n+3 \(⋮\)d

=> 2n+3 - 2n -2 \(⋮\)d

=> 1 \(⋮\)d

=> d =1

Vì d= 1 nên phân số n+1/2n+3 là phân số tối giản

Phần b cũng thế nha 

Khách vãng lai đã xóa
Xyz OLM
24 tháng 7 2020 lúc 11:19

Gọi ƯCLN(n + 1 ; 2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

=> \(1⋮d\Rightarrow d=1\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{2n+3}\) là phân số tối giản

b Gọi ƯCLN(2n + 3 ; 4n + 8) = d

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d}\) 

=>  \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2\right\}\)

Vì \(2n+3\)là số lẻ với mọi n nguyên

=> 2n + 3 không chia hết cho 2 

=> \(d\ne2\)=> d = 1

Khi d = 1 , 2n + 3 ; 4n + 8 là 2 số nguyên tố cùng nhau

=> B là phân số tối giản

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
24 tháng 7 2020 lúc 12:02

a) Gọi d là ƯC( n+1 ; 2n+3 )

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1;2n+3\right)=1\)

=> \(\frac{n+1}{2n+3}\)tối giản ( đpcm )

b) Gọi d là ƯC( 2n+3 ; 4n+8 )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=\left\{1;2\right\}\)

\(d=2\Rightarrow2n+3⋮̸d̸\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Rightarrow\frac{2n+3}{4n+8}\)tối giản ( đpcm ) 

Khách vãng lai đã xóa
Trình Nguyễn Quang Duy
Xem chi tiết
Nhật Hạ
5 tháng 5 2019 lúc 17:38

a, \(\frac{n+2}{n+3}\)

Gọi \(d=ƯCLN\left(n+2,n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản

Nhật Hạ
5 tháng 5 2019 lúc 17:41

b, \(\frac{n+1}{2n+3}\)

Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...

Nhật Hạ
5 tháng 5 2019 lúc 17:48

c, \(\frac{2n+3}{4n+8}\)

Gọi \(d=ƯCLN\left(2n+3,4n+8\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Nhưng 2n + 3 là số lẻ \(\Rightarrow\)d cũng là số lẻ

\(\Rightarrow d=1\)

Vậy....

Phạm Tường Nhật
Xem chi tiết
Mới vô
29 tháng 4 2017 lúc 18:40

\(\frac{n+1}{2n+3}\)

Gọi ƯCLN(n + 1, 2n + 3) là a

Ta có:

n + 1\(⋮\)a

\(\Rightarrow\)2(n + 1)\(⋮\)a

\(\Leftrightarrow\)2n + 2\(⋮\)a

2n + 3\(⋮\)a

\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a

\(\Rightarrow\)1\(⋮\)a

\(\Rightarrow\)a = 1

Mới vô
29 tháng 4 2017 lúc 18:45

\(\frac{2n+1}{3n+2}\)

Gọi ƯCLN(2n + 1, 3n + 2) là b

Ta có:

2n + 1\(⋮\)b

\(\Rightarrow\)3.(2n + 1)\(⋮\)b

\(\Leftrightarrow\)6n + 3\(⋮\)b (1)

3n + 2\(⋮\)b

\(\Rightarrow\)2.(3n + 2)\(⋮\)b

\(\Leftrightarrow\)6n + 4\(⋮\)b (2)

Từ (1), (2) ta có:

(6n + 4) - (6n + 3)\(⋮\)b

\(\Leftrightarrow\)1\(⋮\)b

\(\Rightarrow\)b = 1

Vậy ƯCLN(2n + 1, 3n + 2) là 1

\(\Rightarrow\)Phân số tối giản

Phan Huy Toàn
4 tháng 8 2017 lúc 15:02

A là 1 nhé bạn 

Đúng chắc luôn

khuyên
Xem chi tiết
Vũ lệ Quyên
Xem chi tiết
Đinh Đức Hùng
14 tháng 2 2016 lúc 18:15

Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d      ( 1 )

=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d   ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d

=> 1 ⋮ d => d = + 1

Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên \(\frac{n+1}{2n+3}\)  là p/s tối giản

Câu 2 làm tương tự

Yuu Shinn
14 tháng 2 2016 lúc 18:16

Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d      ( 1 )

=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d   ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d

=> 1 ⋮ d => d = + 1

Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên p/s đã cho là p/s tối giản

Câu 2 làm tương tự

Phương ARMY
Xem chi tiết
Phạm Tuấn Đạt
16 tháng 8 2018 lúc 17:02

Giả sử phân số sau chưa tối giản

\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\)

Vậy d có thể = 2 

Vậy p/s sau vẫn có thể tối giản đc

Nguyễn Thị Hải
16 tháng 8 2018 lúc 17:12

Giả sử ƯCLN  (2n+3;4n+8)=d

\(\Rightarrow4n+8⋮d\)\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)

\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)

Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì  số tư nhiên n

Chú bạn hok tốt