Cho 2n + 1 là số nguyên tố (n>2) CM: 2n - 1 là hợp số
Help me!!!
cho p là số nguyên tố [p>3] và 2p+1 cũng là số nguyên tố hỏi 4p+1laf số nguyên tố hay hợp số
help me oooooo
Do p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 hoặc 3k + 2 \((k\in\mathbb{N})\).
+) Nếu p = 3k + 1 thì 2p + 1 = 2(3k + 1) + 1 = 6k + 3 = 3(2k + 1) chia hết cho 3. Mà 2p + 1 > 3 nên 2p + 1 là hợp số (vô lí).
+) Nếu p = 3k + 2 thì 4p + 1 = 4(3k + 2) + 1 = 12k + 9 = 3(4k + 3) chia hết cho 3. Mà 4p + 1 > 3 nên 4p + 1 là hợp số.
Vậy 4p + 1 là hợp số.
cho 2n+1 là số nguyên tố với n>2. Chứng minh rằng 2n-1 là hợp số?
Tham khảo:
Ta có: 2^n+1;2^n;2^n-1 là 3 số tự nhiên liên tiếp
=>một trong 3 số trên chia hết cho 3
mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3
mặt khác: 2^n ko chia hết cho 3
=>2^n-1 chia hết cho 3
CHÚC CẬU HỌC TỐT VÀ ĐẠT KẾT QUẢ CAO!
cho 2n+1 là số nguyên tố với n>2. Chứng minh rằng 2n-1 là hợp số?
Vì 2n+1 là số nguyên tố với n > 2
=> ta có: 2n+1-1 = 2n => chia hết cho 2 => 2n+1 là nguyên tố thì 2n-1 là hợp số (đpcm)
sao gì nóng nhất
Chứng minh rằng nếu 2n – 1 là số nguyên tố (n > 2) thì 2n + 1 là hợp số.
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
Bafi1:
2n+3 và 6n+7 ( x thuộc N)
bài 2:
CM rằng :
a)n+ 2 ,2n +3 là số nguyên tố
b)3n+1 và 2n+1 là hai số nguyên tố
a, Gọi d là ƯCLN của n + 2 và 2n + 3
\(\Rightarrow n+2⋮d\)
\(\Rightarrow2\left(n+2\right)⋮d\)
\(\Rightarrow2n+4⋮d\)
Mà \(2n+3⋮d\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\) mà d là ƯCLN \(\Rightarrow d=1\)
=> 2 số n + 2 và 2n + 3 là 2 số nguyên tố cùng nhau
b, Gọi d là ƯCLN của 3n + 1 và 2n + 1
\(3n+1⋮d\) và \(2n+1⋮d\)
\(\Rightarrow2\left(3n+1\right)⋮d\)và \(3\left(2n+1\right)⋮d\)
\(\Rightarrow6n+2⋮d\) và \(6n+3⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\)mà d là ƯCLN => d = 1
=> 2 số 3n +1 và 2n + 1 là hai số nguyên tố cùng nhau
nếu 2^n -1 là số nguyên tố(n>2) thì 2n +1 là hợp số
Các bạn giúp mình bài toán nâng cao này nha
a)Cho n là số tự nhiên. Chứng tỏ rằng 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
b)Cho n là số nguyên tố lớn hơn 3 . Hỏi n^2 + 2018 là số nguyên tố hay hợp số?Vì sao?
Bạn nào trả lời đúng nhất mình sẽ cho 1 tick
Cho a = 1+2+3+...+n; b= 2n+1. CM a và b là 2 số nguyên tố cùng nhau
vi ước chung lớn nhất của 2 số đó bằng 1
\(a=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Thấy: \(2n+1=\frac{2\left(2n+1\right)}{2}\)
Dễ dàng chứng minh được: \(\text{Ư}C\left(n\left(n+1\right);2\left(2n+1\right)\right)=1\)
Như vậy ta đã chứng minh xong đề bài.
Cho a = 1+2+3+...+n; b= 2n+1. CM a và b là 2 số nguyên tố cùng nhau
Cho a=1+2+3+...+n và b=2n+1 (với n thuộc N;n>1). CM: a và b là 2 số nguyên tố cùng nhau?
Ta có :
a = 1 + 2 + 3 + ... + n
Số lượng số của tổng a là :
( n - 1 ) : 1 + 1 = n ( số )
Tổng a là :
( n + 1 ) x n : 2
Do ( n + 1 ) x n là 2 số liên tiếp
=> ( n + 1 ) x n \(⋮2\)
=> ( n + 1 ) x n : 2 \(⋮1\), n > 1
=> a là số nguyên tố
Ta có :
a = 1 + 2 + 3 + ... + n
Số lượng số của tổng a là :
( n - 1 ) : 1 + 1 = n ( số )
Tổng a là :
( n + 1 ) x n : 2
Do ( n + 1 ) x n là 2 số liên tiếp
=> ( n + 1 ) x n ⋮2
=> ( n + 1 ) x n : 2 ⋮1, n > 1
=> a là số nguyên tố
tổng a là
\(\frac{n.\left(n+1\right)}{2}\)
do n và n+1 là hai số liên tiếp
\(\Rightarrow\)\(n.\left(n+1\right)⋮2\)
\(\Rightarrow\)\(\frac{n.\left(n+1\right)}{2}⋮1\left(n>1\right)\)
\(\Rightarrow\)a là số nguyên tố
\(\Rightarrow\)\(\left(a,b\right)=1\left(đpcm\right)\)