Cho x+y=1. Tìm giá trị nhỏ nhất của A =3-xy
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
b, ta có : \(x+y=1=>2x+2y=2\)
\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)
\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)
=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)
cho x+y=1 tìm giá trị nhỏ nhất của: a) A=x^2+y^2 b)B= 3-xy
a) Có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Dấu \(=\)xảy ra khi \(x=y=\frac{1}{2}\).
b)
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow-4xy\ge-\left(x+y\right)^2=-1\)
Suy ra \(B=3-xy\ge3-\frac{1}{4}=\frac{11}{4}\)
Dấu \(=\)xảy ra khi \(x=y=\frac{1}{2}\).
Cho hai số thực dương x y thỏa mãn x+y=1. Tìm giá trị nhỏ nhất của A=xy+\(\dfrac{1}{xy}\)
Có: \(A=16xy+\dfrac{1}{xy}-15xy\)
Áp dụng bdt Co-si, ta có:
\(16xy+\dfrac{1}{xy}\ge2\sqrt{16xy.\dfrac{1}{xy}}=8\)
Có \(x+y\ge2\sqrt{xy}< =>xy\le\dfrac{1}{4}\)
=> A \(\ge8-15.\dfrac{1}{4}=\dfrac{17}{4}\)
Dấu "=" xảy ra <=> x = y= \(\dfrac{1}{2}\)
cho x+y=1 tìm giá trị nhỏ nhất của A=x^3+y^3+xy
giải giúp mik với mấy bạn
Ta có: A= x^3 + y^3 + xy
= (x+y)(x^2 - xy + y^2) + xy
= x^2 - xy + y^2 + xy
= x^2 + y^2 >= 0
Vậy MinA=0 khi x=0 và y=0
cho x, y là các số thực dương thỏa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức A=x^3/(1+y)+y^3/(1+x)
\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)
\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)
Áp dụng BĐT cô si với các số dương x2 ; y2 ; x4 ; y4 ta được :
\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)
Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho x2+y2=6 .
a)Tìm giá trị nhỏ nhất của A=x 4+y4
b) Tìm giá trị lớn nhất của B=x+y; C=xy
Lời giải:
a. Áp dụng BĐT Cô-si:
$x^4+9\geq 6x^2$
$y^4+9\geq 6y^2$
$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$
$A+18\geq 36$
$A\geq 18$
Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$
b.
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 12\geq (x+y)^2$
$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 6\geq 2C$
$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$
Tìm giá trị nhỏ nhất của biểu thức : A=x^3+y^3+xy biết x,y thỏa mãn: x+y=1
\(x+y=1\Rightarrow x=1-y\)
\(A=x^3+y^3+xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2+y^2\) (vì x + y = 1)
\(=\left(1-y\right)^2+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu "=" xảy ra khi: \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\Rightarrow x=1-y=\frac{1}{2}\)
Vậy GTNN của A là \(\frac{1}{2}\)khi \(x=y=\frac{1}{2}\)
\(A=x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2-xy+y^2+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
Nên min A là \(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)
cho x - y = 1 . Tìm giá trị nhỏ nhất của
A = 3- xy ( giải giúp mik nha ! Thanks)