Tìm điều kiện của số tự nhiên n để phân số sau có thể rút gọn được: \(\frac{n+2}{2n+1}\)
tìm tất cả số tự nhiên n để phân số \(\frac{2n-1}{3n+2}\) có thể rút gọn được
tìm số tự nhiên n để phân số \(\frac{2n+1}{n+2}\)là phân số rút gọn được
Gọi d là ước chung nguyên tố của 2n + 1 và n + 2
Ta có : 2n + 1 và n + 2 chia hết cho d
=> 2n + 1 và 2n + 4 chia hết cho d
=>(2n + 4) - (2n + 1) chia hết cho d
=> 3 chia hết cho d => d = 3
Để p/s tối giản thì d ko bằng 3
=> 2n + 1 ko chia hết cho 3
=> 2n + 1 - 3 ko chia hết cho 3
=> 2n - 2 ko chia hết cho 3
=> 2.(n - 1) ko chia hết cho 3
=> n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)
=> n ko bằng 3k + 1(k thuộc Z)
Vậy với n ko bằng 3k + 1 thì p/s tối giản
Gọi d là ước chung nguyên tố của 2n + 1 và n + 2
Ta có : 2n + 1 và n + 2 chia hết cho d
=> 2n + 1 và 2n + 4 chia hết cho d
=>(2n + 4) - (2n + 1) chia hết cho d
=> 3 chia hết cho d => d = 3
Để p/s tối giản thì d ko bằng 3
=> 2n + 1 ko chia hết cho 3
=> 2n + 1 - 3 ko chia hết cho 3
=> 2n - 2 ko chia hết cho 3
=> 2.(n - 1) ko chia hết cho 3
=> n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)
=> n ko bằng 3k + 1(k thuộc Z)
Vậy với n ko bằng 3k + 1 thì p/s tối giản
tìm số tự nhiên n để phân số \(\frac{2n+1}{n+2}\)là phân số rút gọn được
Ta có: (2n+1) chia hết cho (n+2)
=>2(n+2)-3 chia hết cho n+2
=>-3 chia hết cho n+2
=> n+2 thuộc Ư(-3)
ta có bảng sau:
n+2 | 3 | -3 | 1 | -1 |
n | 1 | -5 | -1 | -3 |
vậy n thuộc tập hợp {1; -3; -1; -5} thì n rút gọn được
mk bt làm ƯCLN của 2n+1 và n+2\(\in\)(1,3 rồi các bạn chỉ cần trình bày đoạn sau thui
Mk cx đg thắc mắc bài này.Thầy giáo cx giao bài tương tự như thế.
Tìm điều kiện của số nguyên n để phân số 2n+15/n+2 rút gọn được
Cần gấp!!!
để 2n+15/n+2 rút gọn được thì 2n+15 chia hết cho n+2
=> 2n+4+11 chia hết n+2
Vì 2n+4 chia hết cho n+2 => 11 chia hết n+2
=> n+2 thuộc ước của 11
=> n+2 thuộc 1;-1;11;-11
=> n thuộc -1;-3;9;-13
bài 1: phân số\(\frac{n+9}{n-6}\)(n thuộc N) có thể rút gọn cho số nào?
bài 2:tìm số tự nhiên n để phân số\(\frac{18n+3}{\text{23n+7}}\)có thể rút gọn được?
1) Đặt: ( n + 9 ; n - 6 ) = d với d là số tự nhiên
=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)
=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }
=> d có thể rút gọn cho số 3; 5; 15
2) Đặt: ( 18n + 3 ; 23n + 7 ) = d
=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)
=> \(57⋮d\)
=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)
=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được khi d = 3; d = 19 ; d = 57
Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19
Nên mình chỉ cần xác định n với d = 3 và d =19
+) Với d = 3
\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)
=> \(n+11⋮3\)
=> \(n-1⋮3\)
=>Tồn tại số tự nhiên k sao cho: \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3
+) Với d = 19
\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)
=> \(n+11⋮19\Rightarrow n-8⋮19\)
=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19
Vậy n = 3k + 1 hoặc n = 19k + 8 thì phân số sẽ rút gọn được.
a, các phân số sau có thể rút gọn cho các số tự nhiên nào [n\(\in\)N]
A=\(\frac{n+4}{n-1}\) B= \(\frac{4n-1}{2n+1}\)
b, Tìm các số nguyên n để A và B nhận giá trị nguyên
c, Tìm các số tự nhiên n trong khoảng từ 50 đến 70 để các phân số rút gọn được
d, Tìm các số tự nhiên n trong khoảng từ 100 đến 120 để các phân số tối giản
\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}\) vì 1 thuộc Z => để A thuộc Z thì 5 / n-1 thuộc Z
<=> n-1 thuộc Ư(5 )=> n-1 = 5 => n = 6
n-1 = -5 => n=-4
n-1 = 1 => n= 2
n -1 = -1 => n = 0
B làm tương tự tách 4n -1 = 4n + 2 -3 = 2. ( 2n+1 ) -3
tìm số tự nhiên n để phân số sau có thể rút gọn được
\(\frac{15n-28}{12n-32}\)
Ta có
\(\Rightarrow\frac{15n-28}{12n-32}=\frac{3n\times5n-4\times7}{3n\times4n-4\times8}=\frac{35}{32}\)
1) Tìm điều kiện của số tự nhiên n để phân số sau có thể rút gọn được: \(\frac{n+2}{2n+1}\)
2) Với giá trị nào của \(x\in Z\) thì phân số \(\frac{10x}{5x-3}\) ; \(\frac{x^2+2x-1}{x-1}\)có giá trị là 1 số nguyên?
3) Chứng minh \(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4.....98\) chia hết cho 99.
\(A=\frac{n+4}{n-1}\)
\(B=\frac{4n-1}{2n+1}\)
a) Các phân số sau có thể rút gọn cho những số tự nhiên nào?
b) Tìm các số nguyên n để A và B được giá trị nguyên