Những câu hỏi liên quan
_little rays of sunshine...
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Nguyen hoan
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2022 lúc 0:05

\(\sum\dfrac{a}{\sqrt{ab+b^2}}=\sum\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\sum\dfrac{2\sqrt{2}a}{2b+a+b}=2\sqrt{2}\sum\dfrac{a}{a+3b}\)

\(=2\sqrt{2}\sum\dfrac{a^2}{a^2+3ab}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)

\(=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)

Bình luận (0)
minh nguyen
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:30

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

Bình luận (2)
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 21:23

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Bình luận (0)
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 8 2021 lúc 15:53

\(\dfrac{P}{\sqrt{2}}=\dfrac{a}{\sqrt{2b\left(a+b\right)}}+\dfrac{b}{\sqrt{2c\left(b+c\right)}}+\dfrac{c}{\sqrt{2a\left(a+c\right)}}\)

\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2a}{2b+a+b}+\dfrac{2b}{2c+b+c}+\dfrac{2c}{2a+a+c}\)

\(\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)=2\left(\dfrac{a^2}{a^2+3ab}+\dfrac{b^2}{b^2+3bc}+\dfrac{c^2}{c^2+3ca}\right)\)

\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)

\(\Rightarrow P\ge\dfrac{3\sqrt{2}}{2}\) (đpcm)

Bình luận (0)
missing you =
8 tháng 8 2021 lúc 16:00

\(\dfrac{a}{\sqrt{ab+b^2}}=\dfrac{\sqrt{2}.a}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{\sqrt{2}.a}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)

làm tương tự với \(\dfrac{b}{\sqrt{bc+c^2}};\dfrac{c}{\sqrt{ca+a^2}}\)

\(=>P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\)

\(=2\sqrt{2}\left(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\right)\)

\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\dfrac{4}{3}\left(ab+bc+ca\right)+\dfrac{8}{3}\left(ab+bc+ca\right)}\right]\)

\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{\dfrac{4}{3}\left(a+b+c\right)^2}\right]=\dfrac{2\sqrt{2}.3}{4}=\dfrac{3\sqrt{2}}{2}\)

dấu"=" xảy ra<=>a=b=c

Bình luận (0)
Vũ Tiền Châu
Xem chi tiết
Feed Là Quyền Công Dân
4 tháng 2 2018 lúc 23:22

Ko lq nhưng ta chuẩn hóa \(a+b+c=3\). So:

\(M\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{3}{2}\)

Bình luận (0)
Trương Thị Hải Anh
Xem chi tiết
Akai Haruma
14 tháng 3 2018 lúc 15:50

Lời giải:

Ta có: \(\text{VT}=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^2}{b}-a+b+\frac{b^2}{c}-b+c+\frac{c^2}{a}-c+a\)

\(=\frac{a^2-ab+b^2}{b}+\frac{b^2-bc+c^2}{c}+\frac{c^2-ca+a^2}{a}\)

Áp dụng BĐT AM-GM:

\(\frac{a^2-ab+b^2}{b}+b\geq 2\sqrt{a^2-ab+b^2}\)

\(\frac{b^2-bc+c^2}{c}+c\geq 2\sqrt{b^2-bc+c^2}\)

\(\frac{c^2-ca+a^2}{a}+a\geq 2\sqrt{c^2-ca+a^2}\)

Cộng theo vế:

\(\Rightarrow \text{VT}+(a+b+c)\geq 2(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2})(1)\)

Lại có:

\(\sqrt{a^2-ab+b^2}=\sqrt{\frac{3}{4}(a-b)^2+\frac{1}{4}(a+b)^2}\geq \sqrt{\frac{1}{4}(a+b)^2}=\frac{a+b}{2}\)

TT: \(\sqrt{b^2-bc+c^2}\geq \frac{b+c}{2}; \sqrt{c^2-ca+a^2}\geq \frac{c+a}{2}\)

Suy ra: \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\geq a+b+c(2)\)

Từ \((1);(2)\Rightarrow \text{VT}\geq \sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (2)
dia fic
Xem chi tiết
dia fic
14 tháng 1 2021 lúc 11:00

\(VT\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)

Bình luận (0)
Trần Minh Hoàng
14 tháng 1 2021 lúc 11:08

Đặt \(\left(x,y,z\right)=\left(\sqrt{a^2+b^2},\sqrt{b^2+c^2},\sqrt{c^2+a^2}\right)\).

Ta có \(x+y+z=\sqrt{2011}\).

BĐT cần cm trở thành: 

\(\dfrac{y^2+z^2-x^2}{2\sqrt{2}x}+\dfrac{z^2+x^2-y^2}{2\sqrt{2}y}+\dfrac{x^2+y^2-z^2}{2\sqrt{2}z}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)

\(\Leftrightarrow\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\ge x+y+z\)

\(\Leftrightarrow\left(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{y}\right)+\left(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\right)\ge2\left(x+y+z\right)\).

Theo bđt AM - GM:

\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{y}=\left(\dfrac{x^2}{y}+y\right)+\left(\dfrac{y^2}{z}+z\right)+\left(\dfrac{z^2}{x}+x\right)-x-y-z\ge2x+2y+2z-x-y-z=x+y+z\).

Tương tự, \(\dfrac{y^2}{x}+\dfrac{z^2}{y}+\dfrac{x^2}{z}\ge x+y+z\).

Dễ có điều phải chứng minh.

 

 

Bình luận (0)
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 19:45

\(P\sqrt{2}\ge\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{c^2+a^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2011}\\a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)

\(\Rightarrow P2\sqrt{2}\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(P4\sqrt{2}\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(P2\sqrt{2}\ge\dfrac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}-\left(x+y+z\right)=x+y+z=\sqrt{2011}\)

\(\Rightarrow P\ge\dfrac{\sqrt{2011}}{2\sqrt{2}}\)

Đề sai

Bình luận (3)