CMR:2222^5555+5555^2222 CHIA HẾT CHO 7
CMR : 2222^5555 + 5555^2222 chia hết cho 7
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7
Bài 1: CMR:(2222^5555+5555^2222) chia hết cho 7
CMR: 22225555 + 55552222 chia hết cho 7
CMR: 22225555 + 55552222 chia hết cho 7 (dùng đồng dư mod)
Ta có:
\(2222\equiv-4\left(mod7\right)\Rightarrow2222^{5555}\equiv\left(-4\right)^{5555}\left(mod7\right)\left(1\right)\)
\(5555\equiv4\left(mod7\right)\Rightarrow5555^{2222}\equiv4^{2222}\left(mod7\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}+4^{2222}\left(mod7\right)\)
Mà (-4)5555 + 42222 = -42222.(43333 - 1) = -42222.[(43)1111 - 1] = -42222.(641111 - 1)
Lại có: \(64\equiv1\left(mod7\right)\Rightarrow64^{1111}\equiv1\left(mod7\right)\)
\(\Rightarrow64^{1111}-1\equiv1-1\left(mod7\right)\) hay \(64^{1111}-1⋮7\)
\(\Rightarrow-4^{2222}.\left(64^{1111}-1\right)⋮7\)
hay \(2222^{5555}+5555^{2222}⋮7\left(đpcm\right)\)
Bài 6:CMR:A=1961^1962+1963^1964+1965^1966+2 chia hết cho 7
Bài 7:CMR:2222^5555+5555^2222 chia hết cho 7
CMR 2222^5555+5555^2222 :7
(2222^5555 + 5555^2222) chia hết cho 7
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7
CM: 5555^2222 + 2222^5555 chia hết cho 7
Chứng minh rằng: 2222^5555 + 5555^2222 chia hết cho 7
2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm