Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Ngọc Linh
Xem chi tiết
Xyz OLM
3 tháng 2 2023 lúc 12:55

c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)

Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)

\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)

Tương tự

 \(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)

\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2) 

Từ (1) và (2) ta được

\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) 

Xyz OLM
3 tháng 2 2023 lúc 13:08

P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)

         \(\overline{50\text{ hạng tử }}\)                            \(\overline{50\text{ hạng tử }}\)

\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\) 

\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

\(\Rightarrow P< \dfrac{5}{6}< 1\)

Phạm Hoàng Nam
Xem chi tiết
Sky Love MTP
14 tháng 2 2016 lúc 20:36

j mà  nhìu zu zậy làm bao giờ mới xong

Trần Thanh Phương
14 tháng 2 2016 lúc 20:38

Ủng hộ mk đi các bạn
 

Ongniel
Xem chi tiết
Hoàng Phú Huy
1 tháng 4 2018 lúc 7:28

ta có  1/101 > 1/150

1/102> 1/150

...>1/150

1/150 = 1/150

=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3

ta có 1/151 >1/200

1/152 > 1/200

..>1/200

1/200 = 1/200

=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4

==> 1/101 + 1/102+....+1/200 > 1/3 +1/4

==> A > 7/12 

Đặng Kiều Trang
Xem chi tiết
Arima Kousei
27 tháng 7 2018 lúc 16:16

a )   Số lượng số của dãy số trên là : 

\(\left(200-101\right):1+1=100\) ( số ) 

Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau : 

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)

\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)

\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)

b )  Số lượng số dãy số trên là : 

\(\left(150-101\right):1+1=50\)( số ) 

Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)

\(\Rightarrowđpcm\)

Nguyễn Phương Chi
Xem chi tiết
Phùng Minh Quân
14 tháng 2 2018 lúc 20:43

Ta có : 

\(N=\frac{101^{103}+1}{101^{104}+1}< 1=\frac{101^{103}+1+100}{101^{104}+1+100}=\frac{101^{103}+101}{101^{104}+101}=\frac{101\left(101^{102}+1\right)}{101\left(101^{103}+1\right)}=\frac{101^{102}+1}{101^{103}+1}=M\)

Vậy\(N< M\)

luu danh phat tai
20 tháng 2 2018 lúc 19:50

Kết quả là:N<M

Huỳnh Bá Nhật Minh
18 tháng 7 2018 lúc 18:37

Ta có :

\(M=\frac{101^2+1}{101^3+1}\)

\(N=\frac{101^3+1}{101^4+1}< 1=\frac{101^3+1+100}{101^3+1+100}=\frac{101^3+101}{101^3+101}=\)\(\frac{101^2\cdot101+101\cdot1}{101^3\cdot101+101\cdot1}=\frac{101\cdot\left(101^2+1\right)}{101\cdot\left(101^3+1\right)}=\frac{101^2+1}{101^3+1}=M\)

\(\Rightarrow M>N\)

nguyen trong hieu
Xem chi tiết
mãi mãi là TDT
1 tháng 4 2016 lúc 20:28

ta có:N<1

=> 101103+1/101104+1 <101103+1+100/101104+1+100

<=>                        N<101103+101/101104+101

<=>                       N<101.(101102+1)/101.(101103+1)

<=>                       N<101102+1/101103+1

hayN<M

Vậy N<M

cô giáo dạy mk cách này đó!nếu bn thấy đúng thì ks cho mk nha!

nguyen trong phuc
1 tháng 4 2016 lúc 20:28

Nếu a/b<1 thì a+m/b+m > a/b (m thuộc Z )

N =101^103+1/101^104+1 < 101^103 +1+100/101^104+1+100

=101^103+101/101^104+101=101x(101^102+1)/101x(101^103+1)

=101^102+1/101^103+1=M

Vậy M < N

Nguyễn Thu Hải
Xem chi tiết
Nguyễn Thảo
29 tháng 3 2015 lúc 14:52

Ta có:\(y=\frac{101^{102}+1}{101^{102}+1}\)\(\Rightarrow\)\(101y=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)

          \(x=\frac{101^{103}+1}{101^{104}+1}\Rightarrow101x=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)     Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\)nên \(1+\frac{100}{101^{^{103}}+1}>1+\frac{100}{101^{104}+1}\)hay 101y>101x. Suy ra y>x

Bùi Ngọc Minh Hà
Xem chi tiết
Bùi Ngọc Minh Hà
16 tháng 4 2022 lúc 14:30

giải giúp mink với

 

Cihce
16 tháng 4 2022 lúc 14:31

M > N

Long Sơn
Xem chi tiết
chuche
25 tháng 3 2022 lúc 20:15

M>N

Minh Hiếu
25 tháng 3 2022 lúc 20:17

Tham khảo:

https://hoc247.net/hoi-dap/toan-6/so-sanh-m-101-102-1-101-103-1-va-n-101-103-1-101-104-1--faq225210.html

TV Cuber
25 tháng 3 2022 lúc 20:17

\(M>N\)