cho a,b,c thuộc R và a,b,c khác 0 ,b^2=ac.cm:
a/c=(a+2007b)^2/(b+2007c)^2
Cho a,b,c thuộc R và a,b,c khác 0 thỏa mã : \(b^2=ac\)
CMR: \(\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(a+2007c\right)^2}\)
cho a,b,c thuộc R và a,b,c khác 0 thỏa mãn \(b^2=ac\).chứng minh rằng\(\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)
Cho a,b,c, thuộc R và a,b,c khác 0 thỏa mãn \(^{b^2}\) =ac .CMR: \(\frac{a}{b}\) =\(\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)
Cho a,b,c \(\varepsilon\)R và a,b,c #0thõa mãn b2=ac.C/minh rằng \(\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)
Ta có: \(b^2=a.c\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=k\left(k\in R\right)\)
\(\Rightarrow a=b.k\); \(b=c.k\)
\(\frac{a}{c}=\frac{a.c}{c.c}=\frac{b^2}{c^2}\left(1\right)\)
\(\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}=\frac{\left(b.k+2007b\right)^2}{\left(c.k+2007c\right)^2}=\frac{\left[b\left(k+2007\right)\right]^2}{\left[c.\left(k+2007\right)\right]^2}=\frac{b^2.\left(k+2007\right)^2}{c^2.\left(k+2007\right)^2}=\frac{b^2}{c^2}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\) \(\left(đpcm\right)\)
Cho a, b, c \(\in\)R và a, b, c\(\ne\)0 thoả mãn b^2=ac. CMR
\(\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)
cho a, b, c \(\in\)R và a, b, c \(\ne0\) thỏa mãn \(b^2=ac\). CMR: \(\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)
cho \(a;b;c\in R\) và a;b;c thỏa mãn b2=ac
CMR ............=\(\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)
b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2007b}{b+2007c}\)
=> \(\left(\frac{a+2007b}{b+2007c}\right)^2=\frac{a+2007b}{b+2007c}.\frac{a+2007b}{b+2007c}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
Vậy \(\frac{a}{c}=\left(\frac{a+2007b}{b+2007c}\right)^2\)
Cho a ,b ,c La số thực thỏa mản điều kiện a khac 0 ,b khac 0 , c khac 0 Cmr a/c = (a+2007b)/(b+2007c)
Bài 1 nếu a+b/c-d =c+d/c-d thì a/b = c/d
Bài 2 nếu b^2=a.c thì a/c=(a+2007b)^2/(b+2007c)^2