Chứng minh rằng :Nếu 2n+1 và 3n+1(n thuộc N) đều là các số chính phương thì n chia hết cho 40
Bài 1:
a) Chứng minh rằng số chính phương lẻ thì chia 8 dư 1
b) Chứng tỏ rằng nếu 2n + 1 và 3n + 1 là các số chính phương lẻ thì n chia hết cho 40 ( n thuộc N*)
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Chứng minh rằng nếu 2n+1 và 3n+1 ( với n là số tự nhiên khác 0 ) đều là số chính phương thì n chia hết cho 40
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
: Chứng minh rằng nếu 2n + 1 và 3n + 1 là hai số chính phương thì n chia hết cho 40
a)Giaỉ phương trình : x^6-7x^3-8=0
b)C/m rằng :Nếu 2n+1 và 3n+1 (n thuộc N) Đều là các số chính phương thì n chia hết cho 40
mk chỉ bít câu a thui: mk viết xn là x^n cho đỡ mất tjan
x6-7x3-8=0
=> x6-8x3+x3-8=0
=> x3(x3-8)+(x3-8)=0
=>(x3-8)(x3+1)=0
=> x3-8=0 hoặc x3+1=0
=>(x-2)(x2+x+4)=0 hoặc (x+1)(x2-x+1)=0
=> x-2=0 hoặc x+1=0( vì x2+x+4 và x2-x+1 luôn lớn hơn 0 với mọi x)
=> x=2 hoặc x=-1
chúc bn hok tốt ^-^
Chứng minh rằng: nếu 2n +1 và 3n +1 (n\(\in\)N) là số chính phương thì n chia hết cho 40.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Chứng minh rằng nếu n thuộc N , n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)
Do đó: n⋮3
Vậy ta có đpcm.
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
⇒2n+1=1(mod8)⇒2n+1=1(mod8)
=> n ⋮⋮ 4
=> n chẵn
=> n+1 cũng là số lẻ
⇒n+1=1(mod8)⇒n+1=1(mod8)
=> n ⋮⋮ 8
Mặt khác :
3n+2=2(mod3)3n+2=2(mod3)
⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ
⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Bạn tham khảo: !!!
Vì 2n-1 là số chính phương. Mà 2n-1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
\(\Rightarrow n⋮4\)
\(\Rightarrow\)n chẵn
\(\Rightarrow n+1\)lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
\(\Rightarrow n⋮8\)
Mặt khác
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 đều là các số chính phương lẻ
\(\Rightarrow n\text{+}1=2n\text{+}1=1\left(mod3\right)\)
\(\Rightarrow n⋮3\)
Mà (3:8)=1
\(\Rightarrow n⋮24\)
Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40
Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40Chứng minh: nếu 2n+1 và 3n+1 là số chính phương thì n chia hết cho 40
Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (với n ∈N) đều là số chính phương thì n⋮40.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
CMR: nếu 2n+1 và 3n+1 đều là các số chính phương thì n chia hết cho 40
Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )
Mik phải đi ngủ rồi !
-Bye-