Tính nhanh:\(B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1025}\)
Bài 1:Tính nhanh:
a,\(\frac{2}{3}+\frac{4}{6}+\frac{6}{3}\)
b,\(\frac{3}{4}+\frac{6}{8}+\frac{18}{12}\)
Bài 2:Tính:
a,\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
b,\(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\)
a, \(\frac{2}{3}+\frac{2}{3}+\frac{6}{3}=\frac{10}{3}\)
b,\(\frac{3}{4}+\frac{3}{4}+\frac{3}{2}=\frac{6}{4}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)
Bài 1 : Tính nhanh :
\(1\frac{1}{2}+2\frac{1}{4}+3\frac{1}{8}+4\frac{1}{16}+.....+8\frac{1}{250}+9\frac{1}{512}\)
ta có: 1+1/2+2+1/4+...+9+1/512
=(1+2+3+4+...+9)+(1/2+1/4+...+1/512)
=45+(1/2+1/4+...+1/512)
gọi số hạng (1/2+1/4+...+1/512) là a ta được :
a=1/2+1/4+...+1/512
2a=1+1/2+1/4+1/8+...+1/256
2a-a=(1+1/2+1/4+...+1/256)-(1/2+1/4+...+1/512)
=1-1/512
=511/512
vậy kết quả của biểu thức đó là45+511/512
tính nhanh:\(\frac{\left(\frac{1}{2}+0,25+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{3}{2}+\frac{1}{8}+\frac{25}{100}\right)+\left(0,75+\frac{1}{5}+50\%+\frac{1}{4}+0,55+\frac{45}{100}\right)}{1x2x3}\)
tính nhanh:
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
AI NHANH MÌNH TICK
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{32}+\frac{1}{64}\)
\(\frac{32+16+8+4+2}{64}=\frac{62}{64}=\frac{31}{32}\)
Tk mh nhé , mơn nhìu !!!
~ HOK TỐT ~
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)\(+\frac{1}{64}\)
= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64
= 63/64
Ta đặt biểu thức trên là A
A x 2 =\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
A x 2 - A = 1 +\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}\)
A = \(1-\frac{1}{64}\)
A =\(\frac{63}{64}\)
tính nhanh
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{481}{280}\)
Tính nhanh:
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}\)
\(=\frac{126}{128}=\frac{63}{64}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)
\(A=1-\frac{1}{64}=\frac{63}{64}\)
1. Tính nhanh
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=\frac{1+1+1+1+1+1+1}{2}\)
\(=\frac{7}{2}\)
Đặt \(T=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(T=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{64}-\frac{1}{128}\right)\)
\(\Rightarrow T=1-\frac{1}{128}=\frac{127}{128}\)
Tính nhanh :
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{512}+\frac{1}{1024}\)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)
Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)
Xin lỗi bạn Trần thị mai Chi nha mk bấm sai kết quả . Kết quả đúng là :
\(A=\frac{2^{10}-1}{2^{10}}\)
tính nhanh:
\(\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}{\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}}\)
tính tử:
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{15}{16}\)
Tính mẫu:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}=\frac{15}{30}+\frac{5}{30}+\frac{2,5}{30}+\frac{1}{30}=\frac{23,5}{30}=\frac{235}{300}=\frac{47}{60}\)
Có: \(\frac{15}{16}:\frac{47}{60}=\frac{15}{16}.\frac{60}{47}=1\frac{37}{188}\)