chứng minh mọi n thuộc N* phân số n+2^n là phân số tối giản và n lẻ
Chứng minh rằng phân số n/n+1 là phân số tối giản với mọi n thuộc N*
Gọi \(d=ƯC\left(n;n+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Rightarrow n+1-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\) phân số \(\dfrac{n}{n+1}\) là phân số tối giản
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
(/ là phần)
Chứng minh rằng, mọi n thuộc Z thì mọi phân số dạng n+2/ 2n+3 là phân số tối giản
Đặt UC(n+2,2n+3)=d
Ta có:
\(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}2\left(n+2\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow1=d\)
Vậy phân số tối giản
gọi ucln của n+2va 2n+3 là d
ta có:
n+2=2n+4;2n+3 du nguyen
2n+4-2n+3
=>1chia het cho d
vi d la ucln cua 1=>d=1
=>do la phan so toi gian
Chứng minh rằng n/n+1 là phân số tối giản với mọi n thuộc N
gọi d là ƯC(n; n + 1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
=> n + 1 - n ⋮ d
=> 1 ⋮ d
=> d = 1
=> n/n+1 là phân số tối giản với mọi n thuộc N
\(\text{Gọi ƯCLN( n , n + 1 ) = d}\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\text{ Phân số }\frac{n}{n+1}\text{ là phân số tối giản}\)
gọi d là ƯCLN
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản
~ Học Tốt ~
chứng minh rằng với mọi n thuộc N phân số 21n+1^ 18n+1 là phân số tối giản
đặt \(ƯCLN_{\left(21n+1;18n+1\right)}=d\)
\(\Rightarrow\hept{\begin{cases}21n+1⋮d\\18n+1⋮d\end{cases}}\)
\(\Rightarrow\left(21n+1\right)-\left(18n+1\right)⋮d\)
\(\Leftrightarrow3n⋮d\)\(\Rightarrow21n⋮d\)
mà \(21n+1⋮d\)
\(\Rightarrow21n+1-21n⋮d\)\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=1\)
do đó phân số 21n+1/18n+1 tối giản với mọi số tự nhiên n
goi d la ƯCLN(21N+1;18N+1)
TA CÓ 18N+1 CHIA HẾT CHO d
21N+1 CHIA HẾT CHO d
=> 126N+7 CHIA HẾT CHO d
126N+6 CHIA HẾT CHO d
=>126N+7-126N-6 CHIA HẾT CHO d
=>1 CHIA HẾT CHO d
=>d=1
VẬY ƯCLN CỦA TỬ VÀ MẪU LÀ 1 =>PHÂN SỐ TỐI GIẢN VỚI MỌI N THUỘC N
chứng minh phân số với mọi n thuộc Z sau là phân số tối giản: n+3/2n+5
Giải
Đặt \(\left(n+3,2n+5\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[2\left(n+3\right)\right]⋮d\\\left(2n+5\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left[2\left(n+3\right)-\left(2n+5\right)\right]⋮d\)
\(\Leftrightarrow\left[2n+6-2n-5\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\frac{n+3}{2n+5}\) là phân số tối giản (đpcm)
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
Chứng minh rằng: phân số n/n+1 (n thuộc Z) tối giản
b) CMR: Phân số 246913579 / 123456790 tối giản
c) CMR: các phân số 2m+3 / m+1 ; 4m+8/ 2m+3 là các phân số tối giản với mọi m thuộc Z
Giải chi tiết nha!