Giải phương trình: \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
Giải phương trình : \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\).
\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
\(\Leftrightarrow\frac{2-x}{2001}+1=\left(\frac{1-x}{2001}+1\right)+\left(\frac{-x}{2003}+1\right)\)
\(\Leftrightarrow\frac{2003-x}{2001}=\frac{2003-x}{2002}+\frac{2003-x}{2003}\)
\(\Leftrightarrow\left(2003-x\right)\left(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow\left(2003-x\right)=0\) (vì \(\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\))
\(\Leftrightarrow x=2003\).
Vậy tập nghiệm của phương trình là \(S=\left\{2003\right\}\).
Giải phương trình sau:
a) \(\frac{1-x}{2013}=1+\frac{2-x}{2012}-\frac{x}{2014}\)
b) \(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
a,\(\Leftrightarrow\left(\frac{1-x}{2013}+1\right)=\left(\frac{2-x}{2012}+1\right)-\left(1-\frac{x}{2014}\right)\)
\(\Leftrightarrow\frac{2014-x}{2013}=\frac{2014-x}{2012}-\frac{2014-x}{2014}\)
\(\Leftrightarrow\frac{2014-x}{2013}-\frac{2014-x}{2012}+\frac{2014-x}{2014}\)=0
\(\Leftrightarrow\left(2014-x\right)\left(\frac{1}{2013}-\frac{1}{2012}+\frac{1}{2014}\right)=0\)
\(\Leftrightarrow x=2014\left(do.cái.còn.lại.\ne0\right)\)
b,tương tự +1 vào cái thứ nhất ,+1 vào cái thứ 2,1- vào cái thứ 3 được x=2013
Giải phương trình
a, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}\frac{x+4}{2001}\)
b, \(\frac{201-x}{99}+\frac{205-x}{97}+\frac{205-x}{95}+3=0\)
c, \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\)
\(\Leftrightarrow x=-2005\)
b) Sửa đề :
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x=300\)
c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)
\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)
\(\Leftrightarrow x=2004\)
Vậy....
1) phân tích đa thức thành nhân tử :
a) (2x-1)^2-(4x-2)-3
b) x(x+1)(x+2)(x+3) -8
2) giải phương trình sau
\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}+\frac{x+3}{2003}+\frac{x+4}{2004}=5\)
2.
pt <=> (x/2000 - 1) + (x+1/2001 - 1) + (x+2/2002 - 1) + (x+3/2003 - 1) + (x+4/2004 - 1 ) = 0
<=> x-2000/2000 + x-2000/2001 + x-2000/2002 + x-2000/2003 + x-2000/2004 = 0
<=> (x-2000).(1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004) = 0
<=> x-2000=0 ( vì 1/2000 + 1/2001 + 1/2002 + 1/2003 + 1/2004 > 0 )
<=> x=2000
Tk mk nha
1.
a, = (2x-1)^2-2.(2x-1)+1-4
= (2x-1-1)^2-4
= (2x-2)^2-4
= (2x-2-2).(2x-2+2)
= 2x.(2x-4)
b, = [x.(x+3)].[(x+1).(x+2)]
= (x^2+3x).(x^2+3x+1)-8
= (x^2+3x+1)^2-1-8
= (x^2+3x+1)^2-9
= (x^2+3x+1-3).(x^2+3x+1+3)
= (x^2+3x-2).(x^2+3x+4)
= ((x+1).(x+3).(x^2+3x-2)
Tk mk nha
Giải Phương Trình : \(-\frac{2-x}{2001}=\frac{x}{2003}\)\(-\frac{1-x}{2002}\)
Giúp mik nha ! Mai mik phải nộp r
Giải phương trình
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
<=> \(\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)
<=> \(\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)
<=> (x - 2004)(1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4) = 0
<=> x - 2004 = 0 (vì 1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4 khác 0)
<=> x = 2004
Vậy S = {2004}
đề bài \(=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{4}{2000}+\frac{x}{2001}-\frac{3}{2001}+\frac{x}{2002}-\frac{2}{2002}=\frac{x}{2}-\frac{2002}{2}+\frac{x}{3}-\frac{2001\\}{3}+\frac{x}{4}-\frac{2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{1}{500}+\frac{x}{2001}-\frac{1}{667}+\frac{x}{2002}-\frac{1}{1001}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}+1001+667+500=0\)
\(\Leftrightarrow\left(\frac{x}{2000}+\frac{x}{2001}+\frac{x}{2002}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}\right)+\left(1001+667+500-\frac{1}{500}-\frac{1}{667}-\frac{1}{1001}\right)=0\)
=> x=1
giai các phương trình sau:
a,\(\frac{1-x}{2013}=1+\frac{2-x}{2012}-\frac{x}{2014}\)
b,\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
c,\(\frac{x-a-b}{c}+\frac{x-b-c}{a}+\frac{x-a-c}{b}=3\)
d,(x+3)4 + (x+5)4=16
e,x4+ 3x3 - 7x2- 27x-18=0
f,\(\frac{2-x}{2001}-1=\frac{1-x}{2002}-\frac{x}{2003}\)
Giải phương trình:
\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
https://olm.vn/hoi-dap/detail/212443421285.html
Giải phương trình :
\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}=3\)
\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}=3\)
\(\Leftrightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)=0\)
\(\Leftrightarrow\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}=0\)
\(\Leftrightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\right)=0\)
\(\Leftrightarrow x-2000=0\).Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\ne0\)
\(\Leftrightarrow x=2000\)
\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}=3\)
\(\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)+3=3\)
\(\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}=0\)
\(\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\right)=0\)
Mà: \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\ne0\)
\(\Rightarrow\)x-2000=0
Vậy : x=2000