cho tổng : A= 4n+4. tim n để A chia hết cho n
Cho tổng: A= 4n+4 (n thuộc Z ). Tìm n để A chia hết cho n?
B= 5n+6 (n thuộc Z ). Tìm n để B chia hết cho n?
A chia hết cho n
mà 4n chia hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4)={1;-1;2;-2;4;-4}
câu b tương tự nhé
tim n thuộc z để 3x-4 chia hết cho 4n+1
Tìm n để: A)2n - 1 chia hết cho n+1
b) 4n-1 chia hết cho 2n +1
c) 5-3n chia hết cho n-1
d)n^2 +3n+5 chia hết cho n+3
e)n^2+4n+3 chia hết cho n+4
1tìm n thuộc N* để
a 6 chia hết (n+1)
b(n+4) chia hết (n-1)
c(n+6) chia hết (n-1)
d(4n+3) + (2n-6)
2chứng tỏ rằng
a tổng của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3
b tổng của 4 số tự nhiên liên tiếp là 1 một số không chia hết cho 4
tim n thuộc N để 4n-5 chia hết cho 13
tim n thuộc N để:
a)3^n-1chia hết cho 8
b) A= 3^ 2n+3 + 2^ 4n +1 chia hết cho 25
c) 5^n-2^n chia hết 9
a) Tìm n để (4n+4)chia hết cho (2n-1)
b) Tìm n để (n^2-9n+7)chia hết cho (n-9)
Tìm số nguyên n để:
a) n^2-4n+29 chia hết cho 5
b) n^2+2n+6 chia hết cho n+4
c) n^200+n^100+2 chia hết cho n^4+n^2+1
a) \(n^2-4n+29=\left(n^2-4n+4\right)+25=\left(n-2\right)^2+25\)
Để \(n^2-4n+29⋮5\Rightarrow\left(n-2\right)^2⋮5\)
Do 5 là số nguyên tố nên \(\left(n-2\right)⋮5\Rightarrow n=2k+5\left(k\in Z\right)\)
b) \(n^2+2n+6=\left(n+4\right)\left(n-2\right)+14\)
Vậy để \(\left(n^2+2n+6\right)⋮\left(n+4\right)\Rightarrow14⋮\left(n+4\right)\)
\(\Rightarrow n+4\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(\Rightarrow n\in\left\{-18;-11;-6;-5;-3;-2;3;10\right\}\)
c) Ta thấy:
\(n^{200}+n^{100}+1=\left(n^4+n^2+1\right)\left(n^{196}-n^{194}+n^{190}-n^{188}+...+n^4-n^2\right)+n^2+2\)
Để \(n^{200}+n^{100}+1⋮\left(n^4+n^2+1\right)\Rightarrow\left(n^2+2\right)⋮\left(n^4+n^2+1\right)\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)
tim n thuộc N để
câu 1 :
n + 6 chia hết cho n - 1
câu 2
4n - 5 chia hết cho 2n -1