Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Haniri
Xem chi tiết
Thao Nhi
16 tháng 8 2015 lúc 21:30

9999931996.9999933-5-5555571996.555557=......1....7-.....1.....7=....7-...7=...0 tan cung la 0 nen chia het cho5

 

Lộc Nguyễn Trần Phước
16 tháng 8 2015 lúc 21:35

9999931999=9999934k+3=9999934k.9999933=1.7=7(mod 10)
5555571997=5555574k+1=5555574k.555557=1.7=7(mod 10)
ta có : A=9999931997-5555571997=7-7=0(mod 10)
hay A chia hết cho 5

Nguyễn Minh Tùng
Xem chi tiết
nguyenthingan
Xem chi tiết
Nguyễn Vũ Dũng
1 tháng 2 2016 lúc 19:26

tìm các chữ số tận cùng của hai số trên ta có :

A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)

Nguyễn Thị Ghost
Xem chi tiết
Trần Thị thu Diệu
Xem chi tiết
Nguyễn Ngọc Minh Châu
29 tháng 3 2017 lúc 15:24

Ta có: \(A=999993^{1999}-555557^{1997}\)

\(=999993^{1998}.999993-555557^{1996}.555557\)

\(=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(=\left(...9\right)^{999}.999993-\left(...9\right)^{998}.555557\)

\(=\left(...9\right).999993-\left(...1\right).555557\)

\(=\left(...7\right)-\left(...7\right)\)\(=\left(...0\right)\)

Chữ số tận cùng của \(A=999993^{1999}-555557^{1997}\) là \(0\).

\(\Rightarrow\)\(A=999993^{1999}-555557^{1997}⋮5\)

Quìn
29 tháng 3 2017 lúc 15:19

Cho \(A=999993^{1999}-555557^{1997}\)

\(^{1999}\) có dạng \(4n+3\) nên \(999993^{1999}=\overline{...7}\)

\(^{1997}\) có dạng \(4n+1\) nên \(555557^{1997}=\overline{...7}\)

Ta có: \(\overline{...7}-\overline{...7}=\overline{...0}\)

\(\overline{...0}⋮5\) \(\Rightarrow\) \(A⋮5\)

Nguyễn Minh Trang
6 tháng 2 lúc 21:57

Ta có: A = 99999 3 1999 − 55555 7 1997 A=999993 1999 −555557 1997 = 99999 3 1998 . 999993 − 55555 7 1996 . 555557 =999993 1998 .999993−555557 1996 .555557 = ( 99999 3 2 ) 999 . 999993 − ( 55555 7 2 ) 998 . 555557 =(999993 2 ) 999 .999993−(555557 2 ) 998 .555557 = ( . . . 9 ) 999 . 999993 − ( . . . 9 ) 998 . 555557 =(...9) 999 .999993−(...9) 998 .555557 = ( . . . 9 ) . 999993 − ( . . . 1 ) . 555557 =(...9).999993−(...1).555557 = ( . . . 7 ) − ( . . . 7 ) =(...7)−(...7) = ( . . . 0 ) =(...0) Chữ số tận cùng của A = 99999 3 1999 − 55555 7 1997 A=999993 1999 −555557 1997 là 0 0. ⇒ ⇒ A = 99999 3 1999 − 55555 7 1997 ⋮ 5 A=999993 1999 −555557 1997 ⋮5

bincorin
Xem chi tiết
doremon
15 tháng 11 2014 lúc 20:16

Để A chia hết cho5 ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của mỗi số. 

Ta có :

 \(3^{1999}=\left(3^4\right)^{499}\times3^3=81^{499}\times27=......7\)

\(7^{1997}=\left(7^4\right)^{499}\times7=2041^{499}\times7=....7\)

Vậy  A có chữ số tận cùng là 0 nên A chia hết cho 5

 

Nguyễn Việt Hoàng
6 tháng 4 2017 lúc 19:36

Để A chia hết cho 5 thì A phải có chữ số tận cùng là 0 hoặc 5

Ta có: (1) 9999931999=(9999934)499. 9999933

Vì 9999934 có tận cùng là 1 suy ra (9999934)499 có tận cùng là 1

9999933 có tận cùng là 7 suy ra (9999934)499. 9999933 có tận cùng là 7 ( ta nhân 2 chữ số tận cùng lại với nhau 1.7=7)

(2) 5555571997= (5555574)499 .7

Ta có 5555574 có tận cùng là 1 suy ra (5555574)499 có tận cùng là 1 nên (5555574)499.7 có tận cùng là 7

 Vậy chữ số tận cùng của A là 7-7=0. Từ đây ta kết luận A chia hết cho 5

Lê tuấn dũng
14 tháng 4 2019 lúc 21:54

Để chứng minh A chia hết cho 5, ta xét chữ số tận cùng của A bằng việc xét chữ sốtận cùng của từng số hạng.

Ta có: 31999 = ( 34)499 . 33= 81499. 27

Suy ra: 31999 có tận cùng là 7
71997 = ( 74)499 .7 = 2041499 . 7 =>7 1997Có tận cùng là 7

Vậy A có tận cùng bằng 0 ,=>Achia hết cho 5

Thúy Ngân
Xem chi tiết
Nguyen Tra My
Xem chi tiết
Mạnh2k5
Xem chi tiết
Quân Butterfly
2 tháng 11 2017 lúc 20:07

A=999993^1999-555557^1997=\(\left(....3^{1996+3}\right)-\left(....7^{1996+1}\right)=\left(....3^{1996}\right)x27-\left(.....7\right)^{1996}\)x7=(....1)x27-(....1)x7

=(....7)-(.....7)=(...0) chia hết cho 5(sử dụng chữ số tận cùng và tính chất chia hết cho 5)