\(\left\{{}\begin{matrix}x+y=360\\112\%x+110\%y=400\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=360\\110\%x+115\%y=400\end{matrix}\right.\)các bạn giải giúp mình nha
\(110\%x+115\%y=400\\ \Rightarrow1.1x+1.15y=400\\ x+y=360\\ \Leftrightarrow1.1\left(x+y\right)=360\cdot1.1=396\\ \Rightarrow\left(1.1x+1.15y\right)-1.1\left(x+y\right)=1.1x+1.15y-1.1x-1.1y=0.05y=4\\ \Leftrightarrow y=\dfrac{4}{0.05}=80\\ \Rightarrow x=360-80=280.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}80x+81y=12,1\\x+y=0,15\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}7x+y=1,03\\3,3x-y=0\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x+y=0,2\\400\left(0,5x-y\right)+152\cdot3y=32,8\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}69x+57y=16,65\\x+y=0,25\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}69x+8y=8,1\\1,5x+y=0,3\end{matrix}\right.\)
f)\(\left\{{}\begin{matrix}107x+90y=1,97\\x+y=0,02\end{matrix}\right.\)
g)\(\left\{{}\begin{matrix}24x+56y=6,4\\x+y=0,2\end{matrix}\right.\)
h)\(\left\{{}\begin{matrix}69x-y=6,8\\1,5+y=0,25\end{matrix}\right.\)
i)\(\left\{{}\begin{matrix}24x+56y=5,2\\x+y=0,15\end{matrix}\right.\)
k)\(\left\{{}\begin{matrix}16x+96y=16\\104x+96y+58z=30,6\\88x+96y+58z=29\end{matrix}\right.\)
l)\(\left\{{}\begin{matrix}x=40\\x+1,5=0,8\end{matrix}\right.\)
m)\(\left\{{}\begin{matrix}80x+160y=8\\135x+325y=15,7\end{matrix}\right.\)
n)\(\left\{{}\begin{matrix}0,5x+y=0,4\\36,5x+98y=11,47\end{matrix}\right.\)
Tất cả các bài đều là dạng hệ đơn giản giống nhau, trừ câu l đề có vấn đề ra thì đều giải một cách đơn giản bằng phương pháp cộng đại số được, ko có gì khó cả.
Ví dụ câu a:
\(\left\{{}\begin{matrix}80x+81y=12,1\\x+y=0,15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}80x+81y=12,1\\-81x-81y=-12,15\end{matrix}\right.\)
Cộng hai pt lại:
\(-x=-\frac{1}{20}\Rightarrow x=\frac{1}{20}\)
Thay vào pt \(x+y=0,15\Rightarrow y=0,15-x=\frac{1}{10}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\frac{1}{20};\frac{1}{10}\right)\)
Các câu khác làm tương tự
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy=13\\x^4+y^4+x^2y^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(x^2+y^2\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=13+xy\\\left[\left(x+y\right)^2-2xy\right]^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(13-xy\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\\left(x+y\right)^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) hoặc x+y = -4
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-4\\xy=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
Mọi người có thể giải thích từ dấu tương đương thứ 3 xuống 4. tại sao lại như vậy k?
\(\left\{{}\begin{matrix}x+y=19\\xy+6x=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19-y\\x\left(y+6\right)=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19-y\\\left(19-y\right)\left(y+6\right)=150\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=19-9=10\\y=9\end{matrix}\right.\)
giải hệ:
\(\left\{{}\begin{matrix}x+2y=7\\x^2+y^2-2xy=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=2\\x^2+y^2+164\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y+xy=-13\\x^2+y^2-x-y=32\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-y=3\\x^3-y^3=7\end{matrix}\right.\)
Câu 1:
Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):
$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$
$\Leftrightarrow 9y^2-42y+48=0$
$\Leftrightarrow (y-2)(9y-24)=0$
$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$
Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$
Câu 3: Bạn xem lại PT(2) là -x+y đúng không?
Câu 4:
$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$
$\Leftrightarrow 3^3-9xy=7$
$\Leftrightarrow xy=\frac{20}{9}$
Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:
$X^2-3X-\frac{20}{9}=0$
$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị
$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.
\(\left\{{}\begin{matrix}5x+\dfrac{16}{y}=360\\\dfrac{5x}{y}=\dfrac{\dfrac{16}{5}y}{x}\end{matrix}\right.\)
Lời giải;
Từ PT(2) suy ra $5x^2=\frac{16y^2}{5}$
$\Leftrightarrow x^2=(\frac{4}{5}y)^2$
$\Leftrightarrow x=\frac{4}{5}y$ hoặc $x=\frac{-4}{5}y$
Nếu $x=\frac{4}{5}y$ thì: thay vào PT(1):
$4y+\frac{16}{y}=360$
$\Leftrightarrow y+\frac{4}{y}=90$
$\Leftrightarrow y^2-90y+4=0$
$\Leftrightarrow (y-45)^2=2021$
$\Leftrightarrow y-45=\pm \sqrt{2021}$
$\Leftrightarrow y=45\pm \sqrt{2021}$
$\Rightarrow x=36\pm \frac{4}{5}\sqrt{2021}$ (tương ứng)
Trường hợp $x=\frac{-4}{5}y$ giải tương tự.
giải hệ pt bằng phương pháp thế:
1) \(\left\{{}\begin{matrix}x+y=3\\x+2y=5\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x-y=3\\y=2x+1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+3y=4\\y-x=-2\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x=y+2\\x=3y+8\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x-y=1\\3x-4y=2\end{matrix}\right.\)
giúp mk vs ạ mai mk hc rồi
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x+y=800\\\frac{115}{100}x+\frac{112}{100}y=945\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(\sqrt{2}+\sqrt{3}\right)x-y\sqrt{2}=\sqrt{2}\\\left(\sqrt{2}+\sqrt{3}\right)x+y\sqrt{3}=-\sqrt{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{3}{x}+y=5\\\frac{2}{x}-2y=-2\end{matrix}\right.\)
Mn giải chi tiết giúp mình nhé!
giai hpt
a.\(\left\{{}\begin{matrix}x=y+4\\2x+3=0\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}2x+y=7\\3y-x=7\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}5x+y=3\\-x-\dfrac{1}{5}y=\dfrac{-3}{5}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}3x-5y=-18\\x-5=2y\end{matrix}\right.\)
\(a) \begin{cases}x=y+4\\2x+3=0\end{cases}\Leftrightarrow\begin{cases}x = y + 4\\2x = -3\end{cases}\Leftrightarrow\begin{cases}\dfrac{-3}{2} = y + 4\\x = \dfrac{-3}{2}\end{cases}\Leftrightarrow\begin{cases}y = \dfrac{-11}{2}\\x = \dfrac{-3}{2}\end{cases}\\b) \begin{cases}2x + y = 7\\3y - x = 7\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\6y - 2x = 14\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\7y = 21\end{cases}\Leftrightarrow\begin{cases}2x + 3 = 7\\y = 3\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}\\ c) \begin{cases} 5x + y = 3 \\ -x - \dfrac{1}{5}y=\dfrac{-3}{5} \end{cases} \Leftrightarrow \begin{cases} 5x + y = 3 \\ 5x + y = 3 \end{cases} (luôn\ đúng) \Leftrightarrow Phương\ trình\ vô\ số\ nghiệm \\d) \begin{cases} 3x - 5y = -18 \\ x - 5 = 2y \end{cases} \Leftrightarrow \begin{cases} 3x - 5y = -18 \\ 3x - 6y = 15 \end{cases} \Leftrightarrow \begin{cases} x - 5 = 2.(-33)\\ y = -13 \end{cases} \Leftrightarrow \begin{cases}x = -61\\y=-33 \end{cases} \)