giải hệ phương trình:
xy(4xy+y+4)=y^2(2y+5)−1
2xy(x−2y)+x−14y=0
Giải hệ phương trình:
xy(4xy+y+4)=y^2(2y+5)−1
2xy(x−2y)+x−14y=0
giải hệ phương trình:
\(\left\{{}\begin{matrix}xy\left(4xy+y+4\right)=y^2\left(2y+5\right)-1\\2xy\left(x-2y\right)+x-14y=0\end{matrix}\right.\)
giải hệ phương trình:xy=x+2y+3 và 4x3-y3=24x2-45x+15y+41
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2-3xy+2y^2+2x-2y=0\\x^2-2xy+y^2-10x+14Y=0\end{matrix}\right.\)
Giải hệ phương trình: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\\x^2-2y^2+2x+y-3=0\end{cases}}\)
giải hệ phương trình \(\left\{{}\begin{matrix}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{matrix}\right.\)
Cộng vế với vế:
\(4x^2-4xy^2+y^4+x^2-4x+4=0\)
\(\Leftrightarrow\left(2x-y^2\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y^2=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y^2=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\end{matrix}\right.\) thay vào pt đầu chỉ có \(\left(x;y\right)=\left(2;2\right)\) thỏa mãn
giải hệ phương trình:
1/căn(x+2) + 1/căn(y-1) = 1/căn(x+y)
x^2 + y^2 + 4xy - 4x + 2y - 5 = 0
Giải hệ phương trình
\(\hept{\begin{cases}2\left(x+y\right)^3+4xy-3=0\\\left(x+y\right)^4+2y^2+x+1=2x^2+4xy+3y\end{cases}}\)
Hệ phương trình 3 \(9x^2-12xy+4y^2-30x+28y=0\)\(x^2+5y^2+2y-4xy-3=0\)
\(y^3-x^2=2\)
Hệ phương trình 4\(x^2-3xy+2y^2+2x-2y=0\)
\(x^2-2xy+y^2-10x+14=0\)
Hệ phương trình 5\(9x^2-18xy+8y^2+6x-4y=\)0