Tím số chính phương có 4 chữ số biết rằng hai chữ số đầu giống nhau và hai chữ số cuối giống nhau
Tìm một số chính phương có bốn chữ số biết rằng hai chữ số đầu giống nhau và hai chữ số cuối giống nhau
Gọi số cần tìm là \(\overline{aabb}=n^2\)
(\(1\le a\le9;0\le b\le9;a,b\in n\))
Ta có
\(n^2=11\left(100a+b\right)=11\left(99a+a+b\right)\left(1\right)\)
Xét thấy \(\overline{aabb}\) chia hết cho 11
=> a+b chia hết cho 11
Mà \(1\le a+b\le18\)
=> a+b=11 (2)
Thay (2) vào (1) ta có
\(n^2=11^2\left(9a+1\right)\)
=> 9a+1 phải là số chính phương
Thử a=1;2;3;....;9 ta thấy chỉ có 7 thỏa mãn vì 9x7+1=64=82
=>b=4
Vậy số cần tìm là 7744
Giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
Thử quá nhiều--> mệt quá đi
\(\overline{aabb}=11.\left(100a+b\right)=n^2\)
\(\)\(1000\le\overline{aabb}\le9999\Rightarrow33\le n\le99\)
b phải là số chẵn do số cp không có tận cùng hai số lẻ.
vậy n phải chẵn; n số chẵn chia hết cho 11 => n chia hết cho 22
n={44,66,88}
Thử vào có: 88^2=7744 phù hợp
Vậy: số đó là 7744
Tìm số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, hai chữ số cuối giống nhau.
Giups mình ạ.
Tham khảo:
https://olm.vn/hoi-dap/detail/19696548089.html
refer
https://hoc24.vn/cau-hoi/tim-mot-so-chinh-phuong-co-bon-chu-so-biet-rang-hai-chu-so-dau-giong-nhau-va-hai-chu-so-cuoi-giong-nhau.137876568249
Tìm số chính phương có 4 chữ số mà hai chữ số đầu giống nhau và hai chữ số cuối giống nhau
Tìm một số chính phương có 4 chữ số sao cho hai chữ số đầu giống nhau và hai chữ số cuối giống nhau
Giả sử aabb=n^2
<=> a x10^3+ax10^2+bx10 +b=n^2
<=> 11 (100a+b)=n^2
=> n^2 chia hết cho 11
=> n chia hết cho 11
Do n^2 có 4 chữ số nên
32<n<100
=> n=33, n=44, n=55,...n=99
Thủ vào thì n=88 là thõa mãn
Vậy số đó là 7744
tìm 1 số chính phương có 4 chữ số biết 2 hai chữ số đầu giống nhau hai chữ số cuối giống nhau BÀY TAU CẤY
Tìm số chính phương có 4 chữ số mà hai chữ số đầu giống nhau và 2 chữ số cuối giống nhau.
+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
Cho a là một số chính phương có 4 chữ số, biết rằng hai chữ số đầu và hai chữ số cuối của A là giống nhau. Vậy A=?
Tìm số chính phương có 4 chữ số sao cho hai chữ số đầu giống nhau, hai chữ số cuối giống nhau.
Bài 1 Tìm số có 2 chữ số ,biết rằng nếu nhân số đó với 135 thì được một số chính phươmg
Bài 2 :Tìm số chính phương có 4 chữ số sao cho 2 chữ số đầu giống nhau,hai chữ số cuối giống nhau
Bài 1:
Gọi số cần tìm là x; số sau là y2, ta có:
35x = y2
Mà 35 = 5 . 7, x ko thể = 5 hoặc 7
=> Số đó = 35
Bài 2:
Giả sử aabb = n2
<=> a . 103 + a . 102 + a . 10 + b = n2
<=> 11(100a + b) = n2
<=> n2 chia hết cho 11
<=> n chia hết cho 11
Do n2 có 4 chữ số nên: 32 < n < 100
=> n = 33; n = 44; n = 55; ...; n = 99
Thử n = 88 (TMYK)
=> Số đó là: 7744
Bài 1 :
Gọi số phải tìm là n ,ta có \(135n=a^2\left(a\in N\right)\)hay \(3^3.5.n=a^2\)
Vì số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn nên \(n=3.5.k^2\left(k\in N\right)\)
Vì n là số có 2 chữ số nên \(10\le3.5.k^2\le99\Rightarrow k^2\in\left(1,4\right)\)
- Nếu \(k^2=1\)thì \(n=15\)
-Nếu \(k^2=4\)thì \(n=60\)
Vậy số cần tìm là 15 hoặc 60
Bài 2 :
Gọi số chính phương cần tìm là \(n^2=aabb\left(a,b\in N\right)\)và \(\left(1\le a\le9,0\le b\le9\right)\)
Ta có \(n^2=aabb=1100a+11b=11\left(99a+a+b\right)\left(1\right)\)
\(\Rightarrow\left(99a+a+b\right)⋮11\Rightarrow\left(a+b\right)⋮11\Rightarrow a+b=11\)
Thay \(a+b=11\)vào (1)ta được \(n^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)
\(\Rightarrow9a+1\)phải là số chính phương
a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
9a+1 | 10 | 19 | 28 | 37 | 46 | 55 | 64 | 73 | 82 |
Ta thấy chỉ có \(a=7\)thì \(9a+1=64=8^2\)
Vậy \(a=7\Rightarrow b=4\)và số cần tìm là \(7744=11^2.8^2=88^2\)
Chúc bạn học tốt ( -_- )