Tìm x thuộc Z thoả mãn: a.(x^2-20)(x^2-15)(x^2-10)(x^2-5)<0
a) Tìm x thuộc Z biết: /x+5/ -(-17)=20
b) Tìm các cặp sood nguyên x,y thỏa mãn: (x - 2) . (y + 3) = 15
c) Tìm giá trị nhỏ nhất của biểu thức: A=/x -2/ + /y + 5/ - 10 vỡi,y thuộc Z
a,tìm x thuộc Z, biết Ix +5I-(-17) = 20
b,tìm các cặp số nguyên thỏa mãn (x-2).(y+3) = 15
c,tìm giá trị nhỏ nhất của biểu thức A= Ix-2I+Iy-5) -10 với x,y thuộc Z
các bạn trả lời nhanh mình đang vội
a) | x + 5 | - ( -17 ) = 20
=> | x + 5 | = 3
=> x + 5 = 3 hoặc x + 5 = -3
=> x = -2 hoặc x = -8
a) \(\left|x+5\right|-\left(-17\right)=20\)
\(\left|x-5\right|+17=20\)
\(\left|x-5\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-5=3\\x-5=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=8\\x=2\end{cases}}}\)
vậy \(x\in\left\{8;2\right\}\)
b) \(\left(x-2\right)\left(y+3\right)=15\)
Ta có bảng:
x-2 | 1 | 15 | -1 | -15 |
x | 3 | 17 | 1 | -13 |
y+3 | 15 | 1 | -15 | -1 |
y | 12 | -2 | -18 | -4 |
Vậy..
c) \(A=\left|x-2\right|+\left|y-5\right|-10\)
Ta có: \(\left|x-2\right|\ge0\forall x\inℝ\)
\(\left|y+5\right|\ge0\forall y\inℝ\)
\(\Rightarrow A=\left|x-2\right|+\left|y-5\right|-10\ge-10\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}x-2=0\\y-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}}\)
Vậy \(x=2;y=5\)khi đạt \(GTNN=-10\)
hok tốt!!
TÌm x thuộc Z biết: (x^2-20)(x^2-15)(x^2-10)(x^2-5)<0
\(\frac{1}{2}<\frac{x}{5}<\frac{-1}{10}\). Tìm x thuộc Z thoả mãn
Tìm x thuộc z sao cho
a) |x + 5| =< 2
b) ( x^2 -20) × ( x^2 - 15 ) × ( x^2 - 10 ) × (x^2 - 5) < 0
Giúp em với em đang cần gấp
a)\(|x-5|\le2\Leftrightarrow\orbr{\begin{cases}x-5\le2\\x-5\ge2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le7\\x\ge3\end{cases}}}\)
b)\(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\Leftrightarrow\left(x^4-25x^2+100\right)\left(x^4-25x^2+150\right)< 0\\\)
bạn lm như thường nha
mk lười nhập quá
bài 1:tìm x thuộc Z sao cho;
a,|x+5|< hoạc =2
b,(x2-20)(x2-15)(x2-10)(x2-5)<0
Bài 2:tìm tất cả các cặp số nguyên(m,n)thỏa mãn:
a,2m-2n=2048
b,3m+4n-mn=16
Tìm các số hữ tỉ x,y,z thoả mãn:
a) x+y=-7/6 ; y+z=1/4 ; x+z=1/2
b) xy=1/3 ; yz=-2/5 ; xz=-3/10
a, cộng vế vs vế của 3 biểu thức ta có :
\(2\left(x+y+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(2\left(x+y+z\right)=-\frac{5}{12}\)
\(x+y+z=-\frac{5}{24}\)
\(\begin{cases}z=\frac{23}{24}\\x=-\frac{11}{24}\\y=-\frac{17}{24}\end{cases}\)
tìm x,y thuộc z thoả mãn x^2+8y^2+4xy-2x-2y=4
bài 1 tìm x thuộc z thoản mãm
x^2 + y^2 + 13 là số chính phương
bafi tìm xy thuộc z thoả mãn
x!+y!= (x+y)!