cho A=n+2/n-5
a, tìm n để A thuộc Z
b, tìm n để A đạt giá trị lớn nhất
c, tìm n để A có thể rút gọn
Tìm n thuộc N để phân số:
A = (4n+5)/(3n+2)
a, tối giản
b, rút gọn được
c, đạt giá trị lớn nhất, nhỏ nhất
Cho A = \(\frac{3n+7}{n+1}\)
a) Tìm n để A là phân số
b) Tìm n để A có giá trị là số nguyên
c) Tìm n để A rút gọn được
d) Tìm n để A là phân số tối giản
e) Tìm n để A có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
A= 3n-1/n-2
1.Tìm n thuộc Z để A thuộc Z
2.Tìm n thuộc Z để A đạt giá trị nhỏ nhất
3. Tìm n thuộc Z để A đạt giá trị lớn nhất
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3
Cho A = n+2/n+3
a) tìm số nguyên n để A có giá trị nguyên
b)tìm n thuộc Z để A đạt giá trị lớn nhất
n+2/n+3 = n+3-3+2/n+3 = n+3 -1/n+3=n+3/n+3+1/n+3 suy ra 1 chia hết cho n+3 suy ra n+3 thuộc ước của 1=
n+3=1;n=1-3=-2. nếu n+3=-1 suy ra n= -1-3=-4.
b)để A có giá trị lớn nhất suy ra n+3 có giá trị nguyên dương bé nhất suy ra n+3=1 suy ra n=1-3= -2.
k cho mình nha...
Cho A= n+2/n-3
a)Tìm các số nguyên n để A có giá trị nguyên
b)Tìm n thuộc Z để A đạt giá trị lớn nhất
Để\(A\inℤ\)
thì\(n+2⋮n-3\Leftrightarrow\left(n-3\right)+5⋮n-3\Rightarrow5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\Leftrightarrow n\in\left\{4;8;2;-2\right\}\)
a, Ta có : \(A=\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=1+\frac{5}{n-3}\)
Để A có giá trị nguyên thì : \(\frac{5}{n-3}\)phải có giá trị nguyên.
Lại có : \(\frac{5}{n-3}\)có giá trị nguyên khi và chỉ khi : \(5:n-3\)
\(\Rightarrow n-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-2;2;4;8\right\}\)
Vậy:............
b, Để A đạt giá trị lớn nhất thì : \(1+\frac{5}{n-3}\)đạt giá trị lớn nhất
\(1+\frac{5}{n-3}\)lớn nhất khi và chỉ khi : \(\frac{5}{n-3}\)lớn nhất
Khi đó : \(n-3\)nhỏ nhất
Do : \(n-3\ne0\Rightarrow n-3=1\Rightarrow n=4\)
Vậy :......
Cho phân số A = \(\dfrac{5a+3}{7a+4}\) ( A ∈ Z )
a, Phân số trên rút gọn được cho những số nguyên nào?
b, Tìm a ∈ N để Phân số A đạt giá trị lớn nhất
\(\dfrac{help}{me}\)
Cho Phân số A=\(\dfrac{5a+3}{7a+4}\) ( a ∈ Z )
a, Phân số trên rút gọn được cho những số nguyên nào?
b, tìm a ∈ N để Phân số A đạt giá trị lớn nhất.
\(\dfrac{help}{me}\)
a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)
\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.
b) \(A=\dfrac{5a+3}{7a+4}\)
\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)
\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)
Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)
Cho biểu thức B = 2n+3/n-1
a) Tìm n để B là phân số
b) Tìm n để B thuộc Z
c) Tìm n để B là phân số tối giản
d) Tìm n để có giái trị lớn nhất
e) Tìm n để có giá trị nhỏ nhất
m) Tìm n để rút gọn được
Bài 1: Cho phân số \(A=\frac{6n-4}{2n+3}\); n là số nguyên
a) Tìm n để A nhận được giá trị là số nguyên
b) Tìm n để A rút gọn được.
c) Tìm n để A đạt GTLN và tính giá trị đó.
Bài 2: Cho phản số \(B=\frac{4n+1}{2n-3}\); n là số nguyên
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTNN? GTLN? Tính các giá trị đó
Bài 3: Cho phân số \(C=\frac{8n+193}{4n+3}\); n là số nguyên
a) Tìm n để C có giá trị là số nguyên tố
b) Tìm n để C là phân số tối giản
c) Với giá trị nào của n từ khoảng 150 đến 170 thì phân số C rút gọn được
d) Tìm n để C đạt GTNN? GTLN? Tính các giá trị đó