Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
toantoan2014
Xem chi tiết
Tran Ngoc Nhi
Xem chi tiết
Inuyasha
22 tháng 4 2016 lúc 20:04

mình chỉ gợi ý thôi, vì viết cái này mỏi tay lắm thông cảm nha

Ở phần ''a'' bạn hãy đổi ra thành:2=2;4=2;.....sau dó bạn CM \(\frac{1}{2^2}<\frac{1}{1.2}.....\) rồi hãy suy ra nhỏ hơn \(\frac{1}{3}\)

còn phần ''b'' bạn hãy tách ra nha 

Inuyasha
22 tháng 4 2016 lúc 20:05

à chỗ 2=2;4=2 bạn sửa thành : \(2=2^1;4=2^2\) nhé

lê mai phương
Xem chi tiết
Nguyễn Hưng Phát
Xem chi tiết
Bùi Hà Phương
14 tháng 3 2016 lúc 13:14

làm sao để viets phân số

Nguyễn Hưng Phát
14 tháng 3 2016 lúc 13:19

Các bạn xem mình giải có đúng không:

  \(1+\frac{1}{2}+........+\frac{1}{63}+\frac{1}{64}\)

\(=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+...........+\)\(\left(\frac{1}{33}+\frac{1}{34}+...........+\frac{1}{64}\right)\)

\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+...........+\left(\frac{1}{64}+.....+\frac{1}{64}\right)\)

=\(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

=4

Vậy \(1+\frac{1}{2}+..............+\frac{1}{64}>4\)

Nguyễn Viết Phong
Xem chi tiết
i love conan
Xem chi tiết
Thắng Nguyễn
20 tháng 4 2016 lúc 21:17

đặt A=1/2^2+1/3^2+1/4^2+...+1/100^2

B=1/2.3+1/3.4+...+1/99.100

=1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)

từ (1),(2),(3) =>A<2

hoa
20 tháng 4 2016 lúc 21:17

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1-\frac{1}{100}<1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\)

Hoa Lan Anh
20 tháng 4 2016 lúc 21:26

Ta có :.......

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)

\(<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99.100}\)\(=1-\frac{1}{100}=\frac{99}{100}<1\)

vậy ra cái bạn phải chứng minh (theo tính chất bắc cầu )

Akane Miyamoto
Xem chi tiết
Phùng Minh Quân
12 tháng 4 2018 lúc 10:19

Ta có : 

\(1>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

Do từ \(1\) đến \(100\) có \(100-1+1=100\) số tự nhiên nên có \(100\) phân số \(\frac{1}{\sqrt{100}}\) ta được : 

\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\) ( đpcm ) 

Vậy \(A>10\)

Chúc bạn học tốt ~ 

Phạm Thị Thùy Ninh
Xem chi tiết
ThÔnG Cr7 Fc Du ThIêN Fc
5 tháng 4 2016 lúc 20:28

1-1/2+1/3-1/4+...+1/199-1/200=(1+1/2+1/3+1/4+...+199+1/200)-(1+1/2+1/3+...+1/100)=1+1/2+1/3+1/4+...+1/199+1/200-1-1/2-1/3-1/4-...-1/99-1/100=(1+1/2+1/3+...+1/100)-(1+1/2+1/3+...+1/100)+(1/101+1/102+...+1/200)=0+(1/101+1/102+...+1/200)=(1/101+1/102+...+1/200)(đpcm)

Cao Thi Thuy Duong
Xem chi tiết
Dũng Senpai
13 tháng 4 2016 lúc 10:58

mỗi p/số của A đều bé hơn 1/1.2+1/2.3+1/3.4+......+1/49.50

A<1-1/2+1/2-1/3+1/3-1/4+..........+1/49-1/50(tách ra thành hiệu)

A<1-1/50

mà 1/50>0=>1-1/50<1<2

A<1-1/50<1<2

A<2

chúc học tốt