Bài 19 : Chứng minh rằng :
B = 1/51 + 1/52 + 1/53 +.......+ 1/99 + 1/100 >1/2
chứng minh 1/2<1/51+1/52+1/53+.......+1/99+1/100<1
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{2}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}
Chứng Minh:
1/1*2+1/3*4+1/5*6+...+1/97*98+1/99*100=1/51+1/52+1/53+...+1/99+1/100
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Chứng minh :(1+1/3+1/5+...+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+1/53+...+1/100
Chứng minh: 1- 1\2 + 1\3 - 1\4 + 1 \5 - 1\6 + ....... + 1\99 -1\100 = 1\51 + 1\52 + 1\53 + ..........+1\100
đây là j`? đầu đề hổng có, làm sao mà giải đc?????
A = 1 . 2 + 2 . 3 + 3 . 4 + ......... + 98 . 99 / 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ........... + ( 1 + 2 + 3 + ...... + 98 )
B = ( 1 / 51 . 52 ) + 1 / 52 . 53 + ...... + 1 / 100 . 101 ) : ( 1 / 1 . 2 + 1 / 2 . 3 + ........ + 1 / 99 . 100 + 1 / 100 . 101
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)
\(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)
\(\Rightarrow\) \(B⋮A\)
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Chứng tỏ rằng tổng của các phân sau lớn hơn 1/2
s=1/50+1/51+1/52+...+1/98+1/99
S=1/50+1/51+...+1/98+1/99
Ta thấy :
1/50>1/100
1/51>1/100
................
1/99>1/100
1/100=1/100
=>1/51+1/52+1/53+...+1/98+1/99>1/100+1/100+1/100+...+1/100 (Mỗi bên 50 số hạng)
=>S>50.1/100
=>S>50/100=1/2
Vậy S>1/2