Tìm x thuộc z biết
(2/1x3+2/3x5+2/5x7+.....2/97x99) - x = 100/99
Bài 3) Tính giá trị của A, biết rằng
A = 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/97x99
Lời giải:
$A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}$
$=1-\frac{1}{99}=\frac{98}{99}$
a)1/1x3+1/3x5+1/5x7+...+1/Xx(x+3)=99/200
b)1/1x3+1/3x5+1/5x7+...+1/Xx(x+2)
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
Công thức: \(\dfrac{1}{a\times b}=\) 1/ khoảng cách giữa a và b \(\times\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
* Bạn làm theo công thức và vẫn dụng câu b nhé.
tinh
S = 2/1x3-4/3x5+6/5x7-8x7x9+...-96/95x97+98/97x99
Tính :
A= 1x32+3x52+5x72+...+97x992
1x3+3x5+5x7+...+97x99
Đặt biểu thức = A
6A = 1x3x6 + 3x5x6+....+ 97x99x6
= 1x3x(1+5) + 3x5x(7-1) + 5x7x(9-3) +.....+ 97x99x(101-95)
= 1x3+1x3x5+3x5x7-1x3x5+5x7x9-3x5x7+.....+97x99x101-95x97x99
= 1x3+97x99x101
= 969906
=> A = 161651
k mk nha
tìm x :
2/3x5 + 2/5x7 + 2/7x9 + ..... +2/97x99
2/3x5 + 2/5x7 + 2/7x9 + ......+ 2/97x99 = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/97 - 1/99
= 1/3 - 1/99 = 96/3.99 = 32/99
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
=\(\frac{1}{3}-\frac{1}{99}\)
=\(\frac{32}{99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Tính nhanh giá trị biểu thức sau:
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+.....+\frac{2}{95x97}+\frac{2}{97x99}\)
= 1-1/3 + 1/3-1/5+.......+1/97-1/99
= 1 - 1/99
= 98/99
sao lại là 1- 1/3 + 1/3 -1/5 + ...... 1/97 - 1/99 hả bạn :|
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{95.97}\)\(+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-....-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
Bài 1:Tìm x biết:
2/1x3+2/3x5+2/5x7+.....+2/x(x+2)=2015/2016
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{x}-\frac{2}{\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow2-\frac{2}{x+2}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+2}=2-\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+2}=\frac{2017}{2016}\)
\(\Rightarrow2017.\left(x+2\right)=2.2016\)
\(\Rightarrow2017x+4034=4032\)
\(\Rightarrow2017x=-2\)
\(\Rightarrow x=-\frac{2}{2017}\)
Vậy......
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{x\cdot\left(x+2\right)}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(=1-\frac{1}{x+2}=\frac{2015}{2016}\)
=>\(\frac{1}{x+2}=\frac{1}{2016}\)
=>\(x+2=2016\)
=>\(x=2014\)
Vậy.......
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(\Rightarrow x+2=1\div\frac{1}{2016}=2016\)
\(\Rightarrow x=2016-2=2014\)
Vậy giá trị của x là 2014.
tinh E=1x3+3x5+5x7+...+97x99+99x101