CMR
\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{9999}{10000}<\frac{1}{100}\)
so sánh A và B biết:
B=\(\frac{1}{100}\)
A=\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)
Đặt C = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)\(\left(C>0\right)\)
Và D = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{10000}{10001}\)\(\left(D>0\right)\)
Ta có :
C .D = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{10000}{10001}\)\(=\frac{1}{10001}\)\(\left(1\right)\)
Mặt khác :
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(.....\)
\(\frac{9999}{10000}< \frac{10000}{10001}\)
Nhân tất cả vế theo vế - - - > C < D - - - > C2 < C . D \(\left(2\right)\)
\(\left(1\right),\left(2\right)\)- - - >C2 < \(\frac{1}{10001}\)- - - > C < căn \(\frac{1}{10001}\)< căn \(\frac{1}{10000}\)= \(\frac{1}{100}\)( đpcm )
\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}\)=?
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100.100}\)
=\(\frac{1.3.2.4.3.5....999.101}{2.2.3.3.4.4....100.100}=\frac{1.101}{2.100}=\frac{101}{200}\)
1. Tính tổng
\(\frac{1}{2}\cdot\frac{1}{3}\cdot+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{6}+\frac{1}{6}\cdot\frac{1}{7}+\frac{1}{7}\cdot\frac{1}{8}+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
\(\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{8}\cdot\frac{1}{9}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=\frac{1}{2}-\frac{1}{9}\)
* LÀM NỐT *
#Louis
1/2.1/3+1/3.1/4+1/4.1/5+...+1/8.1/9
=1/2.3=1/3.4+1/4.5+...+1/8.9\
=1/2-1/3+1/3-1/4=1/4-1/5+...+1/8.1/9
=1/2-1/9
=9/18-2/18
=7/18
HỌC TỐT NHA BẠN
\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}..........\frac{9999}{10000}\)
So sánh M và N, biết
\(M=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)và \(N=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)
M=(1.3.5.7.....99)/(2.4.6.8.....100)
số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500
số số hạng của mẫu = (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550
--> M= 2500/2550 =50/51
Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N
Vào hướng dẫn viết công thức, hình vẽ ở cuối trang tạo câu hỏi và chọn video đầu ấy
Cho B=\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}.\)CMR\(\frac{1}{15}< B< \frac{1}{10}\)
Tìm X
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\frac{5}{12}\cdot.......\cdot\frac{30}{62}\cdot\frac{31}{64}=4^x\)
1/4.2/6.3/8.4/10.........30/62.31/64=4x
=1/2.1/2.1/2.1/2.............1/2.1/64=4^x
=1/2^30.1/2^6=4^x
=1/2^36=4^x
=1/4^18=4^x
=>x=-18
\(\text{Cho }P=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{399}{400}\text{ Chứng minh }P< \frac{1}{20}\)
\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)
\(P=\frac{1.3.4.5....399}{2.4.5.6.....400}\)
\(P=\frac{1.3}{2.400}\)
\(P=\frac{3}{800}\)
Vì \(\frac{3}{800}< \frac{40}{800}\)
\(\Rightarrow P< \frac{40}{800}\)
\(\Rightarrow P< \frac{1}{20}\left(đpcm\right)\)
Ta co:
\(P=\frac{1}{2}.\frac{3.4.5...399}{4.5.6...400}\)
\(\Leftrightarrow P=\frac{1}{2}.\frac{3}{400}=\frac{3}{800}< \frac{3}{600}=\frac{1}{20}\)
\(\Rightarrow P< \frac{1}{20}\left(dpcm\right).\)
\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)
\(P=\frac{1.3.4.5.....399}{2.4.5.6....400}\)
\(P=\frac{1.3}{2.400}\)
\(P=\frac{3}{800}\)
\(V\text{ì}\frac{3}{800}< \frac{40}{800}\)
\(\Rightarrow P< \frac{40}{800}\)
\(\Rightarrow P< \frac{1}{20}\left(\text{đ}pcm\right)\)
Tìm x, biết:
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\frac{5}{12}\cdot.....\cdot\frac{30}{62}\cdot\frac{31}{64}=2^x\)
\(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}.....\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
\(\Leftrightarrow\dfrac{1}{2.2}.\dfrac{2}{2.3}.\dfrac{3}{2.4}.\dfrac{4}{2.5}.\dfrac{5}{2.6}.....\dfrac{30}{2.31}.\dfrac{31}{2.32}=2^x\)
\(\Leftrightarrow\dfrac{1.2.3.4.5.....30.31}{2.2.2.3.2.4.2.5.2.6.....2.31.2.32}=2^x\)
\(\Leftrightarrow\dfrac{2.3.4.5.....30.31}{2^{31}.32.\left(2.3.4.5.....31\right)}=2^x\)
\(\Leftrightarrow\dfrac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\dfrac{1}{2^{36}}=2^x\)
\(\Leftrightarrow2^{-36}=2^x\)
\(\Leftrightarrow x=-36\)
https://hoc24.vn/hoi-dap/question/279983.html
vào link này nha
Quang Anh:" Mạnh giòi thì về search mạng chí mồ"
Mạnh :" cũng khó không biết chi im mồm"
Và kết quả là đây