\(A=\frac{5^{30}+2}{5^{31}+2}\) \(B=\frac{5^{31}+2}{5^{32}+2}\)
so sánh A và B
So sánh A và B biét
A=\(\frac{19^{30}+5}{10^{31}+5}\)và B=\(\frac{19^{31}+5}{19^{32}+5}\)
A= \(\frac{2^{18}-3}{2^{20}-3}\)và B = \(\frac{2^{20}-3}{2^{22}-3}\)
A = \(\frac{1+5+5^2+.......+5^9}{1+5+5^2+.....+5^8}\) B = \(\frac{1+3+3^2+.....+3^9}{1+3+3^2+.......+3^8}\)
a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)
\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)
Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
c, Câu hỏi của truong nguyen kim
So sánh A và B
\(A=\frac{19^{30}+5}{19^{31}+5}\)
\(B=\frac{19^{31}+5}{19^{32}+5}\)
Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}.19}{19^{32}.19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)Vậy A > B
Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+19}{19^{32}+19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)
Vậy A > B
So sánh A và B:
A=\(\frac{19^{30}+5}{19^{31}+5}\) B=\(\frac{19^{31}+5}{19^{32}+5}\)
\(19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Ta thấy \(19A>19B\) nên A > B
Ta có \(A=\frac{19^{30}+5}{19^{31}+5}\)
Suy ra \(19A=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5}{19^{31}+5}+\frac{90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
Ta có \(B=\frac{19^{31}+5}{19^{32}+5}\)
Suy ra \(19B=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5}{19^{32}+5}+\frac{90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Vì \(19^{31}+5< 19^{32}+5\Rightarrow\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)
Do đó \(19A>19B\Rightarrow A>B\)
Vậy A > B
\(19A=\frac{19\left(19^{30}+5\right)}{19^{31}+5}=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(19B=\frac{19\left(19^{31}+5\right)}{19^{32}+5}=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Do \(\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\)
Nên \(1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)
Hay 19A>19B
Suy ra A>B
Vậy A>B
Bài 1: So sánh lũy thừa
a) 125^80 và 25^125
b) 31^11 và 17^14
c) \(A=\frac{19^{30}+5}{19^{31}+5}vàB=\frac{19^{31+5}}{19^{32}+5}\)
d)\(A=\frac{2^{18}-3}{2^{20}-3}vàB=\frac{2^{20-3}}{2^{22}-3}\)
e) \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}vàB=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
Bài 2: Cho \(A=1+2+2^2+...+2^{30}\)
Viết A+1 dưới dạng lũy thừa
2) A=1+2+22+...+230=>2A=2+22+23+...+231
=>2A-A=A=(2+22+...+231)-(1+2+22+...+230)=231-1
=>A+1=(231-1)+1=231-(1-1)=231-0=231
lm xog chc'..............................................ặc ặc
so sánh A và B
\(A=\frac{19^{30}+5}{19^{31+5}}\) B=\(\frac{19^{31}+5}{19^{32}+5}\)
Cho hỏi, mẫu ở A là: "1931+5" hay là "1931 + 5"?
So sánh:
a)A=\(\frac{19^{30}+5}{19^{31}+5}\):B=\(\frac{19^{31}+5}{19^{32}+5}\)
b)A=\(\frac{2^{18}-3}{2^{20}-3}\):B=\(\frac{2^{20}-3}{2^{22}-3}\)
Lưu ý :Ko tính kết quả chỉ so sánh
Thankyouverymuch
So sánh A và B biết:
a) \(A=\frac{19^{30}+5}{19^{31}+5};B=\frac{19^{31}+5}{19^{32}+5}\)
MỌI NGƯỜI GIÚP MIK VS MIK ĐANG CẦN GẤP.MỌI NGƯỜI GIẢI ĐẦY ĐỦ CHI TIẾT SẼ ĐC TICK NHÉ
\(A=\frac{19^{30}+5}{19^{31}+5}=>19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\left(1\right)\)
\(B=\frac{19^{31}+5}{19^{32}+5}=>19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\left(2\right)\)
từ (1) and (2)
=>19A>19B
=>A>B
Cho A = 530 - 2 / 531 - 2 và B = 531 - 2 / 532 - 2
So sánh A và B
p/s : dấu " / " là đường gạch ngang của phân số
Ai đứng mình cho 1 tick ;))
A = \(\frac{5^{30}-2}{5^{31-2}}\) = 5
B = \(\frac{5^{31}-2}{5^{32}-2}\) = \(\frac{1}{5}\) = 0.2
Mà 5 > 0.2
Nên: A > B
\(5A=\frac{5^{31}-10}{5^{31}-2}=\frac{5^{31}-2-8}{5^{31}-2}=\frac{5^{31}-2}{5^{31}-2}-\frac{8}{5^{31}-2}=1-\frac{8}{5^{31}-2}\left(1\right)\)
\(5B=\frac{5^{32}-10}{5^{32}-2}=\frac{5^{32}-8}{5^{32}-2}=\frac{5^{32}-2}{5^{32}-2}-\frac{8}{5^{32}-2}=1-\frac{8}{5^{32}-2}\left(2\right)\)
từ (1) và (2)
=>A>B
Cho \(A=\dfrac{2023^{30}+5}{2023^{31}+5}\) và \(B=\dfrac{2023^{31}+5}{2023^{32}+5}\). So sánh A và B
Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )
Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)
⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B
Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)
\(=1+\dfrac{2022.5}{2023^{31}+5}\)
Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)
\(=1+\dfrac{2022.5}{2023^{32}+5}\)
Dễ thấy 202331 + 5 < 202332 + 5
\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)
\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)
\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)