Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Linh
Xem chi tiết
Nhật Hạ
7 tháng 7 2019 lúc 10:50

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim 

Cậu Bé Ngu Ngơ
Xem chi tiết
Nguyễn Đình Dũng
1 tháng 10 2016 lúc 13:04

Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}.19}{19^{32}.19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)Vậy A > B

 

Nguyễn Đình Dũng
1 tháng 10 2016 lúc 13:18

Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+19}{19^{32}+19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)

Vậy A > B

No Name
Xem chi tiết
Pham Van Hung
12 tháng 10 2018 lúc 19:53

\(19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)

\(19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)

Ta thấy \(19A>19B\) nên A > B

Kaori Miyazono
12 tháng 10 2018 lúc 19:57

Ta có \(A=\frac{19^{30}+5}{19^{31}+5}\)

Suy ra \(19A=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5}{19^{31}+5}+\frac{90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)

Ta có \(B=\frac{19^{31}+5}{19^{32}+5}\)

Suy ra  \(19B=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5}{19^{32}+5}+\frac{90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)

Vì \(19^{31}+5< 19^{32}+5\Rightarrow\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)

Do đó \(19A>19B\Rightarrow A>B\)

Vậy A > B

Đình Sang Bùi
12 tháng 10 2018 lúc 19:59

\(19A=\frac{19\left(19^{30}+5\right)}{19^{31}+5}=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)

\(19B=\frac{19\left(19^{31}+5\right)}{19^{32}+5}=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)

Do \(\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\)

Nên \(1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)

Hay 19A>19B 

Suy ra A>B 

Vậy A>B

Nguyễn Thùy Dương
Xem chi tiết
Phạm Ngọc Thạch
1 tháng 7 2015 lúc 15:09

nhiều quá bạn ơi!

Bài 2 là 2^31

Lyzimi
1 tháng 7 2015 lúc 15:26

2) A=1+2+22+...+230=>2A=2+22+23+...+231

=>2A-A=A=(2+22+...+231)-(1+2+22+...+230)=231-1

=>A+1=(231-1)+1=231-(1-1)=231-0=231

Cute phômaique
1 tháng 7 2015 lúc 15:07

lm xog chc'..............................................ặc ặc

nguyen phuong uyen
Xem chi tiết
Âm Thầm Trong Đêm
27 tháng 4 2016 lúc 20:55

lấy A nhân với 19

New Super Mario
2 tháng 10 2016 lúc 13:55

Cho hỏi, mẫu ở A là: "1931+5" hay là "1931 + 5"?

lê hoàng yến
8 tháng 10 2016 lúc 20:23

bạn cứ tính quy đồng mẫu số của A là ra

THE HAND ON FIRE
Xem chi tiết
Xem chi tiết
IS
13 tháng 3 2020 lúc 21:11

\(A=\frac{19^{30}+5}{19^{31}+5}=>19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\left(1\right)\)

\(B=\frac{19^{31}+5}{19^{32}+5}=>19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\left(2\right)\)

từ (1) and (2)

=>19A>19B

=>A>B

Khách vãng lai đã xóa
Loan Nguyễn
Xem chi tiết
Trần Nhật Quỳnh
7 tháng 4 2017 lúc 19:34

A = \(\frac{5^{30}-2}{5^{31-2}}\) = 5

B = \(\frac{5^{31}-2}{5^{32}-2}\) = \(\frac{1}{5}\) = 0.2

Mà 5 > 0.2

Nên: A > B

Nguyễn Thanh Bình
7 tháng 4 2017 lúc 19:34

\(5A=\frac{5^{31}-10}{5^{31}-2}=\frac{5^{31}-2-8}{5^{31}-2}=\frac{5^{31}-2}{5^{31}-2}-\frac{8}{5^{31}-2}=1-\frac{8}{5^{31}-2}\left(1\right)\)

\(5B=\frac{5^{32}-10}{5^{32}-2}=\frac{5^{32}-8}{5^{32}-2}=\frac{5^{32}-2}{5^{32}-2}-\frac{8}{5^{32}-2}=1-\frac{8}{5^{32}-2}\left(2\right)\)

từ (1) và (2)

=>A>B

Hồ Kim Ngọc
Xem chi tiết
Lương Thị Vân Anh
17 tháng 4 2023 lúc 20:23

Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )

Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)

⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B

Xyz OLM
17 tháng 4 2023 lúc 20:23

Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)

\(=1+\dfrac{2022.5}{2023^{31}+5}\)

Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)

\(=1+\dfrac{2022.5}{2023^{32}+5}\)

Dễ thấy 202331 + 5 < 202332 + 5

\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)

\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)

\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)