tim so nguyen duong x,y thoa man : x^2=1!+2!+3!+....+y!
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)
mình biết làm nhưng dài quá bạn tra trên google là đc
Tim cac so nguyen duong thoa man: 1/x+1/y=2/3
Giả sử :
\(x\le y\)(1)
=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{y}\)
=> \(\frac{2}{3}\ge\frac{2}{y}\)
=> \(\frac{1}{3}\ge\frac{1}{y}\Rightarrow3\ge y\)(2)
Lại có :
\(\frac{1}{x}+\frac{1}{y}\le\frac{2}{x}\)
=> \(\frac{2}{3}\le\frac{2}{x}\Rightarrow3\le x\)(3)
Từ (1) , (2) , (3)
=> \(3\le x\le y\le3\)
=> x = y = 3
a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
tim cac so nguyen duong x,y,z thoa man x^2+y^3+z^4
tim cac so nguyen duong x y thoa man \(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
tim cac so huu ti x y thoa man x+y va 1/x +1/y nguyen duong
Tim so nguyen duong x,y thoa man dang thuc
x2+xy-2=0
tim hai so nguyen duong x,y thoa man x3 +7x = y3 +7y
\(x^3+7x=y^3+7y\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(7x-7y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+7\right)=0\)
\(TH1:x-y=0\Rightarrow x=y\)
\(TH2:x^2+y^2+xy+7=0\)(pt này không có nghiêm nguyên)
Vậy x = y với x,y nguyên
\(\Leftrightarrow x^3-y^3+7x-7y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2+7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+7=0\end{cases}}\)
Dễ thấy rằng vế dưới là vô nghiệm
\(\Rightarrow x=y\)
Vậy \(\forall x,y\in R\)thì \(x=y\)là nghiệm của pt trên
cho x,y,z la cac so huu ti duong thoa man x+1/yz y +1/xz z+1/xy la cac so nguyen tim gia tri lon nhat cua bieu thuc A=x+y^2+z^3