CMR:1/50+1/51+1/52+...+1/99<5/6
giải đc đúng sẽ tick
Cho 1/50+1/51+1/52+...+1/99 = a/b. CMR: a chia hết cho 149
1/2+1/12+1/30+...+1/9120+1/9506+1/9900. / 50-50/51-51/52-...-97/98-98/99-99/100
CMR
1/50 +1/51 +1/52+...+1/98+1/99>1/2
So sánh
1/11+1/12+...+1/19+1/20 với 1/2
Bài này thầy Chung dạy rồi mà
1/50*51+1/51*52+...........+1/99*100
\(\frac{1}{50\times51}+\frac{1}{51\times52}+...+\frac{1}{99\times100}\)
\(=\frac{51-50}{50\times51}+\frac{52-51}{51\times52}+...+\frac{100-99}{99\times100}\)
\(=\frac{1}{50}-\frac{1}{51}+\frac{1}{51}-\frac{1}{52}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{50}-\frac{1}{100}=\frac{1}{100}\)
CMR: 1/51 + 1/52 + 1/52 +...+1/100 = 1-1/2 + 1/3 - 1/4 +...+1/99-1/100
Ta có \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(\Rightarrow\text{Đ}PCM\)
tính
S=1/50+1/51+1/52+...........+1/98+1/99
Cho B = 1/50 + 1/51 + 1/52 + .....+ 1/99.So sánh B với 1
B=1/50+1/51+1/52+...+1/99
Ta có: 1/50=1/50
1/51<1/50
1/52<1/50
..............
1/99<1/50
1/50+1/51+1/52+...+1/99<1/50+1/50+1/50+...+1/50(50 phân số 1/50)
B<1
1. CMR:
A= 9/4 + 24/9 + ... + 29997/10000 > 294
B= 1/26 + 1/27 + ... + 1/50 = 1 - 1/2 + 1/3 - ... + 1/49 - 1/50
2. Tìm A/B, biết:
A= 1/2 - 3/4 + 5/6 - ... + 197/198 - 199/200
B= 1/51 + 1/52 + 1/53 + ... + 1/99 + 1/100
Chứng tỏ rằng S > 1/2
S=1/50+1/51+1/52+...+1/99
Ta ó: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};....;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\left(50so\right)=\frac{50}{100}=\frac{1}{2}\)
Vậy...
Ta có :
Tất cả các số hạng của tổng đều lớn hơn \(\frac{1}{100}\), mà tổng có 50 số hạng
=> S > \(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)( có 50 số 1/100 )
=> S > \(\frac{50}{100}\)= \(\frac{1}{2}\)
Vậy S > 1/2