Chứng minh rằng tồn tại số có dạng 20032003 …. 200300…0 chia hết cho 2002
Chứng minh rằng tồn tại số có dạng 20032003 …. 200300…0 chia hết cho 2002
- xét dãy số gom 2002 số hạng sau :
2003, 2003.... 2003 , 2003 ... 2003
2002 lan 2003
chia tất cả số hạng của dãy số 2002 có 2002 số dư từ 1 đến 2002[ ko thể có số dư 0 vì các số hạng là số lẻ ]
có 2002 phép chia nên theo nguyên tắc dirichlet phải có ít nhất 2 số có cùng số dư khi chia 2002
giả sử 2 số đó là am và an [m,n N]; 1< = m
voi am = 2003 2003... 2003; an = 2003 2003 ... 2003
ta có :[an- am] chia het cho 2002
hay 2003 2003.... 2003 00 ...00 luon chia het cho 2002
vậy tồn tại có một số dạng 2003 2003 ... 20032003 ..... 200300 ...0 chia het cho 2002
k mk nha
Chứng minh tồn tại số có dạng 20032003...2003000...0 chia hết cho 2002
chứng minh rằng có số 20032003...200300...0(2003 số 2003) chia hết cho 2004
Xét dãy số sau:
2003; 20032003;....; 20032003...2003 (Có n số 2003; n > 2004 )
Nhận xét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004
=> Số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;..; 2003
Dãy trên có nhiều hơn 2003 số nên theo Nguyên lý Dirichlê => có ít nhất 2 số chia cho 2004 có cùng số dư
=> số có dạng 20032003...2003...2003 (có 2003 + m số 2003 ) và số 2003..2003 (có m số 2003 ) có cùng số dư
=> Hiệu của chúng chia hết cho 2004
Hay số 20032003...200300..00 (có 2003 số 2003 ) chia hết cho 2004
Xét dãy số gồm 2005 số hạng:
2003, 20032003, ...2003.....(2003 con số 2003).. 2003,
- xét phép chia từng số hạng của dãy trên cho số 2004 (2005 phép chia được thực hiện), khi đó chỉ có thể xảy ra 2004 số dư 1, 2, 3.....2004 ( không có dư 0 vì 2003..2003 không thể chia hết cho 2004 lí do 2004 là số chẳn chia hết cho 2, trong khi số có dạng 2003...2003 lẻ, không thể chia hết cho 2 => tất nhiên k thể chia hết cho 2004).
- từ suy luận trên ta thấy có ít nhất hai phép chia trong 2005 phép chia có cùng số dư,
giả sử hai số hạng thỏa đk trên là A và B (A<B)
hay gọi dạng cụ thể là: A=2003...2003 (n số 2003), B=2003..2003 (m số 2003), m>n
khi đó xét số D=B-A=2003...2003..000 (có n số 2003 và m-n số 0 ) , rõ ràng là D chia hết cho 2004
Kết luận : tồn tại số theo đề bài cần chứng minh
CMR: Tồn tại số có dạng 20032003...2003 chia hết cho 1991
Chứng minh rằng tồn tại số có dạng 20192019...201900...0 chia hết cho 2018
chứng minh rằng tồn tại số có dạng 19941994...199400...0 chia hết cho 1995.
Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; .
Nếu một trong các số trên chia hết cho 1995 thì dễ có đpcm.
Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 khả năng sẽ chỉ có 1994
dư là 1 ; 2 ; 3 ; ... ; 1994.
Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia
cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là
Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).
Chứng minh rằng tồn tại một số có dạng 20232023...202300...0 chia hết cho 2024
Xét 2024 số có dạng 2023,20232023,20232023...2023,...
Nếu trong các số trên có 1 số chia hết cho 2024=>đpcm
Nếu trong các số trên không có số nào chia hết cho 2024 thì số dư sẽ là 1,2,3,...,2023
Vì có 2023 số dư mà có 2024 số =>theo định lý Dirichlet có ít nhất 2 số có cùng số dư. Gọi 2 số đó là 20232023...2023(a số 2023) và 20232023...2023(b số 2023)(a>b)
Ta có: 20232023...2023(a số 2023)-20232023...2023(b số 2023) \(⋮\) 2024
=>20232023...2023(a-b số 2023)*10^b \(⋮\) 2023
Khi đó 20232023...202300...0 \(⋮\) 2024
=>đpcm
Chứng minh rằng tồn tại số có dạng 199199....199000…0 chia hết cho 2020.
mình cần gấp lắm nhanh lên nha
Chứng minh rằng tồn tại số có dạng : 201620162016...2016 chia hết cho 2017